

Model WW2571/2A is a single/dual channel frequency agile waveform synthesizer that combines industry leading performance, frequency agility and modulation capability in a stand-alone, bench-type product. Having 1.5Hz to 250MHz clock and 16-bit vertical DAC resolution provides the test stimuli required for the decades to come. It can be used as an arbitrary waveform generator, modulating generator, as well as function and pulse generator.

250MS/s Performance

Higher performance test equipment and systems are needed as products which use increasing signal bandwidths are developed. The sample rate generator can be programmed from frequencies as low as 1.5Hz to 250MHz with superior waveform quality and purity. For example, phase noise is typically below 120dB/Hz at 10kHz offset for a 10MHz sine wave.

High Speed Function Generator

Interested in standard functions? There are 10 built-in functions that cover most routine requirements. These are sine, triangle, square, ramp, sinh/x, Gaussian, exponential, noise, as well as DC. Sine and square waves can be generated from frequencies as low as 100µHz to frequencies as high as 100MHz. All functions and their respective parameters are accessible via the front panel.

Waveform Memory

Longer waveform memory minimizes test duration by allowing multiple waveforms to be loaded simultaneously and retrieved as needed for the specific test. Each channel comes with 1M points of memory as standard. Optional 2M or 4M memory is available for applications requiring longer memory.

Digital Outputs

16-bits are available as digital patterns from a rear-panel VHDC connector. Output level is LVDS which is efficient and sufficient for high speed digital data transmissions. Digital patterns are built the same way as arbitrary waveforms; thus the immense power of the waveform generator with all its functions and features is harnessed behind this output turning the WW2571/2A into the most powerful pattern generator in its class.

Frequency Agility

Decrypting radio transmission often employs frequency hopping. The WW2571/2A provides breakthrough technology that allows simulation of 12-bit decrypted code as easy as writing a simple hop table. The frequency hop mode is fast, coherent and provides a great tool for simulating code transmission without losing speed and integrity.

Accurate Output

As standard, the instrument is equipped with an internal frequency reference that has 1ppm accuracy and stability over a period of 1 year. An external frequency reference is provided on the rear panel for applications requiring greater accuracy or stability, supported by the instrument's up to 14 digits resolution from remote.
MODELS WW2571/2A
250MS/s Single/Dual Channel
Arbitrary Waveform Generators

Memory Segmentation and Sequencing
Solving almost every complex application, powerful segmentation and sequencing produce an endless variety of complex waveforms. The waveform memory can be divided into multiple waveform segments and sequenced in user-selectable fashion to create complex waveforms that have repeatable segments and thus saving precious memory space. Five different advance modes are available for the WW2571/2A series to step through the sequence table, including stepped and mixed advance modes and thus increasing efficiency of the test system. To solve even the toughest application, the products allow generation of up to 10 different sequences, each capable of linking 10k waveform fragments and looping each waveform up to 1M times.

Modulation Capability
Agility and modulation capabilities open the door to diverse applications. In addition to the capability of generating any shape and style of waveform with the arbitrary waveform generation power, the products can also do standard modulation schemes such as FM, AM, FSK, ASK, (n)PSK, (n) QAM, amplitude and frequency hops, 3D and sweep without sacrificing the power of the instrument control and output run modes.

Automated External Self-Calibration
Normal calibration cycles in the industry range from one to three years where instruments are sent to a service center, opened to allow access to trimmers, calibrated and certified for repeated usage. Leading-edge technology was implemented to allow calibration from any interface, USB, GPIB or LAN. Calibration factors are stored in a flash memory thus eliminating the need to open instrument covers.

Easy to use
Large and user-friendly 3.8” back-lit color LCD display facilitates browsing through menus, updating parameters and displaying detailed and critical information for your waveform output. Combined with numeric keypad, cursor position control and a dial, the front panel controls simplify the often complex operation of an arbitrary waveform generator.

High Speed Access
Access speed is an increasingly important requirement for test systems. Included with the instrument is a variety of interfaces: LAN, USB and GPIB so one may select the interface most compatible to individual requirements. Using any of the external interfaces, controlling instrument functions and features as well as downloading waveforms and sequences is fast, time saving and easily tailored to every system regardless if it is just a laptop to instrument or full-featured ATE system. IVI drivers and factory support will speed up system integration thus minimizing time-to-market and reduce system development costs significantly.

Multiple Environments to Write Your Code
Model WW2571/2A comes with a complete set of drivers, allowing you to write your application in various environments such as: Labview, CVI, C++, VB, MATLAB. You may also link the supplied dll to other Windows based API’s or, use low level SCPI commands (Standard Commands for Programmable Instruments) to program the instrument, regardless if your application is written for Windows, Linux or Macintosh operating systems.

Phase Control (WW2571/2A)
In the WW2572A, both channels share a common sample clock, and both channels are triggered from the same source assuring tightly synchronized channel-to-channel timing. Precise control over channel-to-channel phase offset is achieved by allowing control over channel start phase with a resolution down to as small as 1 waveform point. This enables extremely accurate timing or phase dependencies to be studied, such as those found in high speed digital communication systems.

Multi-Instrument Synchronization
Multiple WW2571/2As can be synchronized using a Master-Slave arrangement allowing users to benefit from the same high quality performance in their multi-channels needs.

ArbConnection
The ArbConnection software provides you with full control of instrument functions, modes and features. ArbConnection is a powerful editorial tool that allows you to easily design any type of waveform. Whether it is the built in wave, pulse or serial data composers, or the built in equation editor with which you can create your own exotic functions, with ArbConnection virtually any application is possible.

Visit our website at www.taborelec.com
Specification

CONFIGURATION
- Output Channels: 1/2, semi-independent

STANDARD WAVEFORMS
- Waveforms: Sine, Triangle, Square, Pulse, Ramp, Sine(x)/x, Gaussian, Exponential, Repetitive Noise and DC

Frequency Range:
- Sine: 100µHz to 100MHz
- Square, Pulse: 100µHz to 62.5MHz
- All others: 100µHz to 31.25MHz

EXPERIMENTAL PULSE
- Time Constant: -100 to 100
- DC Range: 8V to 8V, standard
- -10V to 10V (with option 3)

PULSE
- Pulse Mode: Single or double, programmable
- Polarity: Normal, inverted or complement
- Period: 16ns to 1000s
- Resolution: 4ns
- Pulse Width: 8ns to 1000s
- Rise/Fall Time:
 - Fast: <4ns (typ.)
 - Linear: 4ns to 1000s
- High Time, Delay & Double Pulse Delay: 4ns to 1000s
- Impedance: 50Ω
- Amplitude Window:
 - Low Level: -7.990V to +8V (1)
 - High Level: -10V to +9.990V (opt. 3)
 - 0%-99.9% of period

TOTAL Harmonic Distortion:
- DC to 100kHz: 0.1%
- Phase Resolution: 0.01°
- Harmonics Distortion, 3Vp-p (typ.):
 - DC to 2.5MHz: <-65dBc
 - 2.5MHz to 25MHz: <-50dBc
 - 25MHz to 40MHz: <-40dBc
 - 40MHz to 50MHz: <-35dBc
 - 50MHz to 100MHz: <-28dBc

Non-Harmonic Distortion:
- DC to 50MHz: <-70dBc
- 50MHz to 100MHz: <-65dBc

NOTES:
1. All pulse parameters, except rise and fall times, may be freely programmed within the selected pulse period provided that the ratio between the period and the smallest incremental unit does not exceed the ratio of 1,000,000 to 1.
2. Rise and fall times may be freely programmed, provided that the ratio between the rise/fall time and the smallest incremental unit does not exceed the ratio of 100,000 to 1.
3. The sum of all pulse parameters must not exceed the pulse period setting.

TRIANGLE
- Start Phase Range: 0-360°
- Phase Resolution: 0.01°
- Timing Ranges: 0%-99.9% of period

SQUARE
- Duty Cycle Range: 0% to 99.9%
- Timing Ranges: 0%-99.9% of period
- Rise/Fall Time: <4ns (typ.)
- Aberration: <5%+10mV

SINC (Sine(x)/x)
- “0 Crossings”: 4-100

GAUSSIAN
- Time Constant: 10-200

ARBITRARY WAVEFORMS
- Sample Rate: 1.55/s to 250MS/s (typ. 300MS/s)
- Vertical Resolution: 16 Bits
- Waveform Memory: 1M points (2M/4M optional)
- Min. Segment Size: 16 points
- Resolution: 4 points
- No. of Segments: 1 to 10k

SEQUENCE WAVEFORMS
- Operation: Segments may be linked and repeated in a user-selectable order to generate extremely long waveforms. Segments are advanced using either a command or a trigger
- Multi Sequence: 1 to 10, Selectable
- Sequence Steps: 1 to 4k
- Segment Duration: 600ns min.
- Segment Loops: 1 to 1M

ADVANCE MODES
- Automatic: No triggers required to step from one segment to the next. Sequence is repeated continuously through a pre-programmed sequence table
- Stepped: Current segment is sampled continuously, external trigger advances to next programmed segment
- Single: Current segment is sampled to the end of the segment including repeats and idles there. Next trigger advances to next segment
- Mixed: Each step of a sequence can be programmed to advance either: a) automatic (Automatic mode), or b) with a trigger (Stepped mode)
- Advance Source: External (TRIG IN), internal or software

MODULATION
- COMMON CHARACTERISTICS
- Carrier Waveform: Sine wave
- Carrier Frequency: 10Hz to 100MHz
- Modulation Source: Internal
- Run Modes: Off (Outputs CW), Continuous, Triggered, Delayed Trigger, Burst, Timer and Gated
- Advance Source: Front panel button, Software commands, TRIG IN
- Carrier Idle Mode: On or Off, programmable
- Marker Position: TTL, Programmable at selectable frequency

Visit our website at www.taborelec.com
SPECIFICATION

FM
- Modulating Shape: Sine, square, triangle, ramp
- Modulation Freq.: 10mHz to 100kHz
- Deviation Range: Up to 50MHz

ARBITRARY FM
- Modulating Shape: Arbitary waveform
- Modulating SCLK: 1S/s to 2.5MS/s
- Freq. Array Size: 4 to 10,000 frequencies

AM
- Envelope Freq.: 10mHz to 100kHz
- Envelope Shape: Sine, square, triangle, ramp
- Modulation Depth: 0% to 100%

FSK
- Baud Rate Range: 1bits/sec to 10Mbits/sec
- Data Bits Length: 2 to 4,000

ASK
- Carrier Phase: 0 to 360°
- Baud Rate Range: 1bits/sec to 10Mbits/sec
- Data Bits Length: 2 to 4,000

FREQUENCY HOPPING
- Hop Table Size: 2 to 1,000
- Dwell Time Mode: Fixed / Programmable per step
- Dwell Time: 200ns to 20s
- Time Resolution: 20ns

AMPLITUDE HOPPING
- Range: 16mVp-p to 16Vpp into 50Ω
- Resolution: Maximum amplitude/4096
- Baud Rate Range: 1bits/s to 10Mbits/s
- Data Bits Length: 2 to 4,000

COMMON CHARACTERISTICS
- Symbol Rate: 1S/s to 1MS/s
- Carrier Control: On/Off
- Symbol Accuracy: ±(500ns + Carrier Period)
- Table Size: 2 to 4096

SWEEP
- Sweep Step: Linear or log
- Sweep Direction: Up or Down
- Sweep Range: 10Hz to 100MHz
- Sweep Time: 1μs to 40s

ACCURACY REFERENCE CLOCK
- Internal: 0.0001% (1 ppm TCXO)
- Initial tolerance over a 19°C to 29°C temperature range; ±1ppm/°C below 19°C and above 29°C; ±1ppm/year aging rate
- External: 10MHz TTL, 50% ±2%, or 50Ω ±5% 0dBm (jumper)

AMPLITUDE
- Range:
 - Standard: 16mV to 16Vpp, into 50Ω
 - Option 3: 32mV to 32Vpp, into open Z
 - Option 4: 64mV to 64Vpp, into open Z
- Resolution:
 - Accuracy (1kHz):
 - 16mV to 160mV-p-p: ±(1% + 5mV)
 - 160mV to 1.6V-p-p: ±(1% + 10mV)
 - 1.6V to 12V-p-p: ±(1% + 70mV)
 - 12V to 16V-p-p: ±2%
 - 16V to 20V-p-p: ±5%

OFFSET
- Range:
 - Standard: 0 to ±7.992V, into 50Ω
 - Option 3: 0 to ±9.981V, into 50Ω
 - Option 4: 0 to ±4.992V, into 50Ω
- Resolution:
 - Accuracy: ±(1% + 1% of Amplitude +5mV)

FILTERS
- Type:
 - Bessel: 25MHz or 50MHz
 - Elliptic: 60MHz or 120MHz

OUTPUTS
- **MAIN OUTPUT**
 - Coupling: DC coupled
 - Connector: Front panel BNC
 - Impedance: 50Ω ±1%
 - Protection: Short Circuit to Case
- **SYNC OUTPUT**
 - Connector: Front panel BNC
 - Level: TTL
 - Sync Type: Pulse
 - LCOM: Arbitrary and Standard waves
 - Sequence and Burst modes
 - Position: 0 to 1M (2M or 4M optional)
 - Resolution: 4 points

DIGITAL PATTERN OUTPUTS
- **CONNECTOR**
 - Rear panel SMB
 - Level: LVPECL
 - Impedance: 50Ω, terminated to +1.3V

INPUTS
- **TRIGGER INPUT**
 - Connector: Rear panel BNC
 - Impedance: 10kΩ
 - Polarity: Positive or negative, selectable
 - Level: ±5V
 - Sensitivity: 100mV
 - Damage Level: ±12V
 - Min. Pulse Width: 10ns

EXTERNAL REFERENCE INPUT
- **CONNECTOR**
 - Rear panel BNC
 - Frequency: 10MHz
 - Impedance & Level: 50Ω ±5%, TTL 50% ±2%
 - Option: 50Ω ±5%, 0dBm Sinewave

Visit our website at www.taborelec.com
MODELS WW2571/2A
250MS/s Single/Dual Channel
Arbitrary Waveform Generators

Specification

SAMPLE CLOCK INPUT
Connector: Rear panel SMB
Input Level: 300mVp-p to 1Vp-p
Impedance: 50kΩ
Range: 1.5Hz to 250MHz
Min. Pulse Width: 4 ns

COUPLE INPUT
Connector: Rear panel SMB
Input Level: LVPECL
Impedance: 50Ω, terminated to +1.3V

RUN MODES
Continuous: Free-run output of a waveform.
Triggered: Upon trigger, outputs one waveform cycle. Last cycle always completed.
Gated: External signal transition enables or disables generator output. Last cycle always completed.
Burst: Upon trigger, outputs a Dual or multiple pre-programmed number of waveform cycles from 1 through 1M.
Mixed: First output cycle is initiated by a software trigger. Consequent output requires external triggers through the rear panel TRIG IN

TRIGGER CHARACTERISTICS
System Delay: 6 SCLK+150ns
Trigger Delay: [0; 200ns to 20s]+system delay
Trigger Resolution: 20ns
Trigger Delay Error: 6 SCLK+150ns

EXTERNAL
Source: Rear panel BNC
Trigger Level: ±5V
Resolution: DC to 2.5MHz
Min. Pulse Width: 10ns
Slope: Positive/Negative, selectable
Trigger Jitter: ±1 sample clock period

INTER-CHANNEL DEPENDENCY (WW2572A)
Separate controls: Output on/off, amplitude, offset, standard waveforms, user waveforms, user waveform size, sequence table
Common Controls: Sample clock (Arb), frequency (Std), period (Pulse) reference source, trigger modes, trigger advance source, SYNC OUT.

PHASE OFFSET (LEADING EDGE)
Range: 0 to 1M points, 2M/4M optional
Resolution: 1 point
Initial Skew: <1ns
Error 1 SCLK

MULTI-INSTRUMENT SYNCHRONIZATION
Initial Skew: <25 ns + 1 SCLK
Waveform Types: Standard, Arbitrary and Sequenced using the automatic sequence advance mode only
Run Modes: Continuous, Triggered, Gated and Counted Burst

PHASE OFFSET (LEADING EDGE)
Run Mode: Continuous run mode only
Offset Range: 200ns to 20s
Resolution: 20ns

FREQUENCY COUNTER / TIMER
Measurements: Frequency, Period, Averaged
Source: Trigger Input
Range: 10Hz to 100MHz (typ.120MHz)
Sensitivity: 500μVpp
Accuracy: 1ppm
Slope: Positive/Negative transitions
Gate Time: 100μSec to 1 Sec
Input Range: ±5V
Trigger Modes: Continuous, Hold and Gated
Period Averaged:
Range: 10ns to 50ms
Resolution: 7 digits / Sec
Totalize:
Range: 1012-1
Overflow: Led indication

INTER-CHANNEL DEPENDENCY (WW2572A)
Separate controls: Output on/off, amplitude, offset, standard waveforms, user waveforms, user waveform size, sequence table
Common Controls: Sample clock (Arb), frequency (Std), period (Pulse) reference source, trigger modes, trigger advance source, SYNC OUT.

PHASE OFFSET (LEADING EDGE)
Range: 0 to 1M points, 2M/4M optional
Resolution: 1 point
Initial Skew: <1ns
Error 1 SCLK

MULTI-INSTRUMENT SYNCHRONIZATION
Initial Skew: <25 ns + 1 SCLK
Waveform Types: Standard, Arbitrary and Sequenced using the automatic sequence advance mode only
Run Modes: Continuous, Triggered, Gated and Counted Burst

PHASE OFFSET (LEADING EDGE)
Run Mode: Continuous run mode only
Offset Range: 200ns to 20s
Resolution: 20ns

GENERAL
Voltage Range: 85 to 265V
Frequency Range: 48 to 63Hz
Power Consumption: 60W
Display Type: Color LCD, back-lit
Resolution 320 x 240 pixels,
Interfaces:
USB Device 1 x rear, USB device, (A type)
LAN 100/10 BASE-T
GPIB IEEE 488.2 standard interface
Dimensions:
With Feet 212 x 102 x 415mm (WxHxD)
Without Feet 212 x 88 x 415mm (WxHxD)
Weight: Without Package 3.5Kg
Shipping Weight 4Kg
Temperature:
Operating 0°C - 50°C
Storage -40°C to + 70°C.
Humidity:
11°C - 30°C 85%
31°C - 40°C 75%
41°C - 50°C 45%
Safety:
EN61010-1, 2nd revision
Calibration:
1 year
Warranty (1): 5 years standard

ORDERING INFORMATION
MODEL DESCRIPTION
WW2571A 250MS/s Single Channel Arbitrary Waveform Generator
WW2572A 250MS/s Dual Channel Arbitrary Waveform Generator

OPTIONS
Option 1: 2M Memory (per channel)
Option 2: 4M Memory (per channel)
Option 3: 20Vp-p into 50Ω

ACCESSORIES
Sync Cable: Multi-instrument synchronization
S-Rack Mount: 19” Single Rack Mounting Kit
D-Rack Mount: 19” Dual Rack Mounting Kit
Case Kit: Professional Carrying Bag

Note: Options and Accessories must be specified at the time of your purchase.

(1) Standard warranty in India is 1 year.

Visit our website at www.taborelec.com