

RF Signal Generation with

Digital Up-Converters in AWGs

White Paper

Rev. 1.0

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 2

Table of Contents

Table of Contents... 2

1 RF Signal Generation Using AWGs .. 3

2 Numerical Up-Conversion Using DUCs .. 5

3 Advantages of DUC for RF signal Generation in AWGs ... 12

4 Implementation of the DUC in the Proteus Family ... 23

5 Appendix A – DUC Programming Example .. 29

6 Appendix B – Proteus Comm Library .. 36

Document Revision History .. 45

Acronyms & Abbreviations .. 45

Resources & Contact .. 49

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 3

1 RF Signal Generation Using AWGs
Arbitrary Waveform Generators (AWG) have always been incorporated in RF signal generation systems

to generate complex modulations, analog or digital. Traditionally, AWGs generated real or complex (I/Q)

baseband signals to feed modulators. In particular, quadrature (IQ) modulators combined with 2-

channel AWGs can generate any analog or digital modulation, provided the modulation bandwidth of

the modulator and the bandwidth/sampling rate of the AWG are sufficient to faithfully generate the

desired signal (fig. 1.1a). IQ modulators are very sensitive to differential responses for the I and Q signal

path, no matter if they come from the AWG or the modulator. Any imbalance, quadrature, I/Q skew,

etc. reduces the modulation accuracy, the available noise floor, and the usability of the generated

signals. This issue grows exponentially with modulation bandwidth, so it is sometimes the most critical

and costly factor for Vector Signal Generators.

As AWGs grew in bandwidth, linearity, and accuracy, a new approach was possible. Instead of

generating the baseband signals, it was possible to generate an already modulated IF signal. The final

RF frequency was then achieved through a mixer. Mixers require an additional component to work, a

Local Oscillator Generator, and produce two sidebands. Most times one of them must be selected using

a suitable BPF. As modulations are implemented mathematically, all the I/Q differential response issues

disappear from the equation. However, mixers and L.O. add their own impairments such as

intermodulation, conversion losses, flatness, and available modulation BW (i.e. connected to IF

frequency).

The continuous advances in DAC and memory technologies have increased bandwidths and sampling

rates for AWGs to the 10GHz range and beyond. This allows for the direct generation of modulated RF

signals in the UHF, L, S, C and X Bands (fig. 1.1b). This approach can support extremely high modulation

BW, well beyond 2GHz, and reduce the complexity and cost while improving flexibility and channel

density, which is especially useful for today’s radar (i.e. AESA radars) and wireless communication

systems (i.e. Massive MIMO). In any case, high-quality direct RF signal generation requires a careful

AWG design and waveform calculation. Proper continuous generation of a modulated RF signal requires

seamless looping or sequencing of one or multiple waveforms. Modulation signals must be consistent

at all levels (symbol, baseband filtering, modulation scheme) when looped and sequenced, so the

modulation keeps its integrity and effects like spectral growth are avoided. For direct IF/RF generation,

the integrity of the carrier must be kept as well. For a given time window (TW) there must be an integer

number of cycles so the signal can be looped without any phase hit. Generally speaking, the number of

cycles of the carrier must be an integer. In other words, carrier frequency must be quantized to

multiples of 1/TW Hertz. This may be acceptable in some applications but not in others. “True arb”

architecture AWGs can change their sampling rate with high resolution and accuracy so the carrier

frequency can be adjusted further, by setting a slightly different sampling rate. However, modifying the

sampling rate will result in a modification of the modulation signal as well (modulation frequency, baud

rate, frequency, and phase deviation, etc). Again, this may be not acceptable in some applications. The

timing and frequency accuracy for carrier and modulating signals can be improved by increasing TW

(thus the number of samples for the waveform), but this leads to consumption of more waveform

memory and increases the calculation and transfer times of those waveforms. An additional issue is the

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 4

sampling rate requirements. For baseband signal generation, sampling rate must be higher than the

modulation bandwidth (MBW). For direct IF/RF generation, sampling rate must be at least twice Fc +

MBW/2, or Fc for small MBW compared to carrier frequency. A modulated RF signal, even for low

modulation bandwidths, may require a huge number of samples to keep the required Time Window.

Generating the same modulation at a different carrier frequency requires calculating and downloading

a new waveform so the new carrier frequency (properly quantized) can be implemented.

Proteus, the new family of high-performance AWG and AWT by Tabor Electronics, has been designed

to support the generation and acquisition of high-quality RF and Microwave signals using high

bandwidth DACs and ADC (up to 9GS/s and more than 9 GHz usable bandwidth). This document will

cover in depth how real-time digital up-conversion (or DUC) and Digital down-conversion (or DDC) is

applied to improve the usability, accuracy and RF performance while offering the best-in-class

modulation and analysis bandwidths while supporting full coherence and phase control over tens and

even hundreds of channels.

Figure 1.1: Modulated RF signal generation can be performed using AWGs. In a), the traditional IQ baseband signal generation
is shown. A two channel AWG generates the two baseband components (as differential outputs in this case) to feed a
Quadrature Modulator. This method requires an additional L.O generator to supply the carrier. In b) a high-speed AWG directly
generates the modulated carrier using a single channel. There is no need for additional components other than filters and
amplifiers.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 5

2 Numerical Up-Conversion Using DUCs
A Quadrature (IQ) Modulator (fig. 2.1) takes a complex baseband signal (In-Phase or real part, I, and

Imaginary or quadrature part, Q) and translates it from 0Hz up to Fc, or carrier frequency.

Mathematically speaking, it does it by multiplying the complex baseband signal by a complex carrier:

SRF(t) = Real{ (I(t) + j Q(t)) x ejt } = Real{(I(t) + j Q(t)) x (cos t + j sin t)}

SRF(t) = I(t) x cos t - Q(t) x sin t,  = 2*  * Fc (1)

In a traditional IQ modulator, a Local Oscillator produces two sinewaves with a nominal 90º phase

difference (quadrature carriers) and those are supplied to two mixers along with the corresponding I

and Q baseband signals. Finally, the outputs are combined, and the quadrature modulated RF signal is

obtained.

Figure 2.1: Block Diagram of an IQ Modulator. The Local Oscillator (or L.O.) can be external to the modulator itself. The quality of
the signal output is influenced by the accuracy and alignment of all the signals and components.

The above process is simple to define in mathematical terms but quite difficult to implement in a

practical way, especially when high carrier frequencies and modulation bandwidths are involved. A

series of impairments may show up reducing the accuracy and quality of the modulation and the RF

signal:

• Quadrature Imbalance: It occurs when the I and Q components at the mixer outputs have

different amplitudes (fig. 2.2c).

• Quadrature Error: This impairment is caused by the lack of orthogonality between the L.O.

signals applied to the I and Q mixers respectively (fig. 2.2b).

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 6

• Carrier Feed-Through: Part of the carrier goes directly, unmodulated, to the final RF signal,

interfering with it and wasting power. It can be caused by DC offsets in the I and Q signals, the

L.O. signals or by an incorrect working point of the mixers (fig. 2.2d).

• I/Q Skew: Differential delay between the I and Q signals becomes more important as

modulation bandwidth grows.

Figure 2.2: IQ Modulation can generate multiple impairments. In this case, a single sideband carrier is generated by supplying two
Fm tones with 90º phase. In a perfect modulator, the right sideband is generated while the undesired sideband is nulled (a). If the
relative phase of the carriers supplied to each multiplier is not 90º, the quadrature error is produced (b) and an unwanted residual
carrier shows up in the opposite sideband. If the amplitude of the I and Q components is not the same, an unwanted sideband
shows up as well as the nulling is not complete (c). Finally, any DC component in any of the I or Q components will show up as an
unwanted tone at the Fc carrier frequency (d). Real modulators combine all the above impairments that can be a function of the
Fm frequency. These are considered linear impairments. Other non-linear impairments are not shown here.

The above impairments, if moderated, can be compensated by a very careful alignment of the

modulator and the I and Q signals sources. When the source is an AWG, the I and Q signals can be

modified to correct, totally or partially, these impairments. However, both procedures are difficult, and

impairments may drift over time, temperature, or frequency so applying them to test equipment, where

conditions change from test to test, may be impractical or even not possible.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 7

Direct generation of the modulated RF signal with an AWG removes the above impairments as

waveforms are defined mathematically. Even more, impairments may be introduced in a controlled way

for margin test purposes with a high level off accuracy and repeatability. Traditional AWGs can generate

those signals by playing back waveforms from the waveform memory with the full modulation already

implemented in it. As previously mentioned, sampling rate is linked to the carrier frequency more than

to the baseband signal bandwidth. Some AWGs, though, can take a different path to solve the IF/RF

generation issue. It consists in the implementation of a numerical, real-time IQ modulator, or Digital

Up-Converter (DUC, fig. 2.3). In these devices, the waveform memory does not store the modulated RF

signal but just the baseband waveforms, either real or complex (I/Q) depending on the modulation

scheme. This architecture has important advantages over the traditional direct RF generation using

AWGs:

• Carrier frequency is not set by the waveforms stored in the memory and it can be independently

set without having to replace the waveforms by operating the digital quadrature L.O. (known

as NCO, or Numerically Controlled Oscillator). The carrier frequency is not linked to the time

window for the modulating signals anymore.

• As samples stored in the waveform memory carry just the baseband information, bandwidth

and sampling rate requirements are set basically by the desired modulation bandwidth. The

sampling rate for the baseband waveforms and the final sample rate for the DAC must be

adapted, though. This operation can be performed using real-time interpolators.

• As traditional direct RF signal generation, this architecture does not suffer from any

impairments as described above.

• Multiple DUC blocks can be combined into a single feed to any of the DACs in the AWG, so more

than one carrier with any desired carrier frequency can be generated simultaneously.

Figure 2.3: Block diagram of the DUC implementation in the Tabor Proteus AWG. Two of these blocks are implemented for each
channel. The fully numerical operation removes all the sources for impairments while the usage of interpolators results in an
important saving in terms of waveform memory and data transfer rate. The carrier frequency and phase can be changed without
recalculating and downloading new waveform data.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 8

The NCO block

A very important component of a DUC is the quadrature NCO (fig 2.4). It can be implemented in different

ways so the final carrier frequency is synthesized. Analog L.O. may use a PLL based synthesizer to define

carrier frequency. Such synthesizers offer a great deal of flexibility, accuracy, and resolution. However,

frequency switching times are influenced by the bandwidth of the closed loop control in the PLL. There

may be a trade-off between switching time and phase noise performance. The behavior of the L.O.

during the switch may be difficult to predict and random.

Figure 2.4: A quadrature NCO is the numerical Local Oscillator in a DUC. IQ modulation requires two carriers with a 90º phase
difference. In a quadrature NCO, a perfect 90º phase can be obtained by using two lookup tables from the same DDS synthesizer
output. Frequency is controlled by the phase increment added for every Sample clock period. Initial phase can be controlled by
setting up the initial content of the Phase accumulator. Phase and frequency resolution depend on the size (in bits) of the Phase
Accumulator.

Although such a synthesis scheme can be also implemented digitally, NCOs in DUC are typically based

on the DDS (Direct Digital Synthesis) architecture. A DDS generates a numerical sinewave by using a

phase accumulator and a lookup table. Basically, for every sampling clock, a given number is added to

the phase accumulator controlling the frequency. The initial value for the accumulator controls the

phase of the sinewave. The value in the accumulator represents the instantaneous phase of the

synthesized sinewave, so the corresponding amplitude is read from the lookup table. In a quadrature

NCO, two lookup tables are implemented and accessed by the same phase word from the accumulator.

One contains the amplitude values corresponding to the Cos signal and the other one the values

corresponding to the -Sin signal. The frequency of the sinewave can be set with a very high resolution

according to the size of the phase accumulator. Fc is set according to the following expression:

Fc = CW * FDAC / 2RES, CW = Control Word, RES = size of the accumulator in bits (2)

FRES = FDAC / 2RES

Using the actual figures from the Tabor Proteus:

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 9

RES = 48 bits

FDAC = 9 x 109 Hz

Fc = 0 Hz ... 9 x 109 Hz

FRES = 9 x 109 / 248 = 32 x 10-6 = 32 Hz

One of the advantages of NCOs based in the DDS architecture is that frequency switch is instantaneous

(from one sample to the next) in a phase-continuous manner so switching glitches are not generated.

The size of the lookup tables is limited so some rounding takes place when converting the phase

accumulator contents to a given entry in the table. The size (resolution) of the entries themselves in the

table is also limited to the size of the multiplier or DAC attached to it. The resolution in the time and

amplitude domains of the lookup table is chosen so any impairment (i.e. spurs) introduced by the

rounding processes taking place (such as the phase noise coming from the limited number of entries),

is negligible in respect to other sources of impairments, such as quantization noise, or the Sampling

Clock (Sclk) phase noise.

The frequency of the output sinewaves can be chosen from DC up to the sampling rate. Traditional AWG

generation can reproduce signals with frequency components between DC and half the sampling rate

(Nyquist Sampling Theorem), called the first Nyquist Zone (or NZ). However, images are produced

around multiples of the sampling clock. Each FDAC /2 wide section of the spectrum is called a Nyquist

Zone and is numbered depending on its frequency location. Images located at these upper order Nyquist

zones can be used, sometimes by filtering out the unwanted images including the one in the NZ #1. As

frequency response of the DAC falls with frequency, not all the images can be effectively used for

practical purposes. Typically, the second and sometime the third Nyquist Zones can be used if the analog

bandwidth of the DAC and the output stage are sufficient, despite the zeroth-order hold response (sin

Af / Af with zeros at all multiples of FDAC) of ideal DACs. One way to select the right carrier frequency

for the NCO in a higher order Nyquist Zone is selecting the following Fc:

Fc = abs(Fc’ – (n – 1) x FDAC), n = NZ #, Fc’ = target Carrier Frequency, n >= 2

For even numbered Nyquist zones, the spectrum of the images will be reversed. If the application

required preserving the original, non-inverted spectrum, then the complex baseband signal (I/Q) must

be replaced by its complex conjugate (by reversing one of the components). However, if the DDS allows

for Fc higher than FDAC / 2, it is better to set up that frequency directly in the CW. The subsampling of

the NCO output in respect to the target Fc’ results in the reversion of the sign of the sin(x) lookup table

for the Fc’ frequency, so the spectrum around the Fc frequency will be reversed, and the one located in

the odd numbered NZs will be right. In this way, baseband data can be preserved unmodified, regardless

of the NZ being targeted (fig. 2.5).

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 10

Figure 2.5: The NCO can be set from DC up to the sampling frequency. The resulting modulated signal will include the
corresponding images resulting from the sampled nature of the waveforms. When generating a signal in the second Nyquist band,
the NCO can be set to the image frequency in the first Nyquist band. However, the spectrum of the modulated signal will be
reversed in the second Nyquist band. Although this problem can be fixed by reversing one of the baseband components, it is much
better to set-up the NCO frequency at the carrier frequency in the second Nyquist band. In this way there is no need to reverse and
update one of the IQ components.

Interpolation

Using the DUC architecture opens the door to separate the sampling rate of the baseband data from

the final sampling rate of the DAC. The sampling rate of the complex baseband data must be higher

than the modulation BW. A 100MHz modulation bandwidth complex baseband signal could be made of

two 50MHz bandwidth signals that should be sampled, at least, at 100MS/s each. However, the DUC

must operate at the final DAC sample rate. This means that the I and Q sampled waveforms must be

resampled (typically upsampled) before reaching the multipliers. It is extremely convenient for practical

purposes that the ratio between the sampling rate of the DAC, and the sampling rate of the baseband

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 11

waveform is an integer, N. One simple way to upsample the baseband waveforms could be keeping the

same sample value for N samples. However, this method would reproduce the images in the original

baseband sample waveforms, and they will show up as unwanted sidebands in the modulated signal. In

order to avoid that, a near ideal interpolation process must be applied before reaching the multiplier

(fig. 2.6). Ideal interpolation cannot be carried out in the real World, especially if it has to be applied

using real-time signal processing. Practical interpolation consists in the upsampling of the incoming

signal using a zero-padding process first (by adding N-1 zero samples between actual samples) and then

applying a powerful digital low-pass filter using a linear phase response LPF FIR to remove the unwanted

sidebands from the interpolated waveform. Practical FIR filters show some roll-off, so the actual

modulation BW supported depends on the size of it. 80 to 90% of the theoretical maximum modulation

BW are typically supported in real implementations.

The Proteus family of AWGs supports multiple interpolation factors (x2, x4, x8) so the sampling rate of

the incoming signal can be reduced according to the actual modulation bandwidth requirements and

the final FDAC. The FIR filters applied are optimized for each factor as the number of available taps grow

with the interpolation factor. Interpolation reduces the size of the waveform in a factor equal to half

the oversampling as two samples (I & Q) per sampling period are required.

Figure 2.6: Interpolation is a very important factor for Digital Up-Conversion. Interpolators increase the sample rate
through a zero-padding process. This process, though, keeps the unwanted images of the signal sampled at a lower
speed. A real-time Low-Pass FIR, or interpolation filter, adds the intermediate samples while removing the images
above the original first Nyquist zone. Here, the X8 interpolator implemented in the Tabor Proteus AWG is shown.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 12

3 Advantages of DUC for RF signal Generation
in AWGs

Waveform Memory Size and Overall Waveform Data Transfer Rate

The gains in terms of waveform memory efficiency when DUC is used to generate RF signals (thanks to

the usage of interpolation) has already been mentioned. However, these gains go beyond what can be

expected from the mere reduction of the incoming sample rate for baseband waveforms. Generating

accurate RF signals through direct generation of the carrier is not as straight forward as it could seem.

For a continuous modulation, the waveform must be calculated in such a way it can be looped

seamlessly. This requires an integer number of symbols, an integer number of carrier cycles, and an

integer number of samples. Some modulation schemes may require the number of symbols in the

sequence, to be a precise number in order to be meaningful for the receiver under test. Additionally,

the waveform length must be always a multiple of a given number in high-speed arbs as samples are

read in parallel from the DDR massive memory. The above considerations may result in the need to

round the actual symbol rate or carrier frequency to the closest value resulting in the required

waveform continuity conditions. An example can help to understand this issue. Let’s take a DVB-T signal

(8MHz channel BW, symbol duration 924s for 1/32 guard interval) for basic receiver test at UHF

channel #69 (858MHz). A minimum consistent DVB-T signal, so the receiver can recognize the

modulation parameters, requires a complete sequence of TPS carriers (these carriers supply the

modulation parameters for the DVB-T signal), made of 32 OFDM symbols. Let’s generate such a signal

through direct generation of the modulated RF signal, at 9GS/s with an AWG with a 64 samples

waveform length granularity. The first thing to do is calculate the duration of the 32-symbol sequence:

Time Window (TW) = 32 * 924s = 29.568ms

The corresponding waveform length can be calculated:

Waveform Length (WL) = SR * TW = 266,112,000 samples

Fortunately, this number is already an integer and a multiple of 64 so the length does not have to be

rounded to the nearest integer multiple of 64 (that should change the accuracy of the symbol rate up

to 0.12 ppm), or repeated in memory until an integer multiple of 64 would be obtained (no symbol rate

error in this case, worst case would lead to repeating the same sequence of samples up to 64 times, so

more than 17G Samples would be required).

Next step is calculating the right carrier frequency so an integer number of cycles for the carrier will be

obtained:

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 13

Number of Carrier Cycles = TW * CF = 25,369,344

Again, the number of cycles at the target carrier frequency is an integer so the carrier frequency will be

accurately generated. If this is not the case, adjusting the number of cycles to the nearest integer could

result in a 17Hz error for the frequency carrier.

Let’s take now the case of the same AWG using a DUC with 8X interpolation. This interpolation results

in a baseband sample rate of 1.125GHz so modulation BW is around 1GHz, more than enough for this

DVB-T signal. Calculations must be repeated for the new conditions:

Waveform Length (WL) = 33,264,000 samples

This is an integer number multiple of 32 (granularity is halved for complex signals stored as interleaved

IQ pairs) so there is no need to round the number or repeat the sequence within the waveform memory.

As the NCO frequency is what determines the carrier frequency, the only important consideration is the

frequency resolution of the NCO, which is typically in the tens of Hz range. The gain in terms of

waveform memory usage is a factor of four (complex samples are made of two real samples each). Even

more, any FC error coming from a frequency error in the sampling clock can be corrected by setting up

a corrected FC in the NCO. The only way to do so is by modifying the sampling rate itself.

Carrier Coherence

The above considerations are also important for pulsed signals (i.e. radar) if carrier coherence must be

maintained between RF bursts (fig. 3.1). Keeping carrier coherence is important in multiple applications.

Coherence requires preserving frequency and phase during all the testing time. Using direct generation

of the RF carrier (no DUC), this may be difficult, if not impossible, depending on the signals being

generated. In a WiFi sequence of packets being made of waveforms segments of different lengths, the

number of cycles of the RF carrier for all the RF bursts might not be an integer number for all of them.

As these signals are bursts, it looks like keeping the number of cycles being an integer number may not

be necessary. However, a careful analysis shows that the phase of the carrier will change from segment

to segments, which is not acceptable for some applications. The NCOs in the DUC keep going

independently of the waveforms being sequenced, so the right coherent phase is maintained, as long

as the NCO is not reset. Another situation, where direct carrier generation may result in the loss of

carrier coherence, is when segment generation is asynchronously started through software, or

hardware trigger events. Again, the NCO independence of the waveform memory reading process,

makes coherence possible no matter the way waveform segments are triggered or sequenced.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 14

Figure 3.1: Many applications require keeping the coherence of the carrier indefinitely. Direct generation of the carrier embedded
in the waveform does not guarantee coherence unless the carrier frequency is limited to one resulting in an integer number of
cycles within a segment. Even in this case, coherence is only kept when segments are seamlessly generated. For asynchronous
generation (i.e. after some external trigger event) coherence will be lost as seen at the top. As NCOs in DUCs run independently of
the modulating waveforms (doted pulses), coherence is kept no matter what, as seen in the bottom trace.

Quantization Noise Dithering

When AWGs generate continuous RF (or non-RF) waveforms by looping the same segment over and

over again, an interesting effect occurs (fig. 3.2). Quantization noise, generated even by perfect DACs

and seen as a random process when dealing with real-world signals, becomes periodic. Quantization

noise can be modelled as a constant distribution white noise with one LSB peak-to-peak amplitude.

Ideally, the SQNR (Signal-to-Quantization-Noise Ratio) for a sinewave using the full DAC range depends

on the resolution in bits of the DAC:

SQNR(dB) = 6.02 x N + 1.76, N = DAC resolution in bits

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 15

The fact that quantization noise becomes periodic, has a major impact on the spectrum of that noise.

While quantization noise in operating devices (such as a CD player or a Wi-Fi transmitter) can be

modelled as random, so its spectrum is dense and evenly distributed, quantization noise for repeating

waveforms shows up as discrete spectral lines located at multiples of the repeating frequency). The

average power level of these discrete tones depends on their number, as total power remains constant,

Figure 3.2: When looping a waveform, such as a multi-tone signal, quantization becomes periodical, and it shows as a series of discrete
tones (a). If the waveform length holds multiple cycles of the waveform without repeating the same sample sequence, the repetition
period grows, and the average power of the tones is reduced at the price of a longer waveform (b). As carriers generated by the DUC does
not have to be synchronous with the waveform, the repetition period of the waveform can be extended to hours, days or weeks. As a
result, quantization noise becomes denser and the best possible SFDR is accomplished (c).

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 16

as depicted in the expression above. In other words, the shorter the signal, the bigger the distance

between those quantization noise tones, and the higher the average power of them. Eventually, these

tones can show up over the background noise and be a major contributor to the reduction of the SFDR

performance, modulation quality degradation, and ACPR. Just to show an example of this, let’s consider

a satellite link QPSK signal at 25.776MBaud (51.552Mbps) generating a PRBS7 test sequence. As a PRBS7

sequence is made of 27-1 = 127 bits, the same sequence of bits must be repeated twice to fit an integer

number of QPSK symbols (2 bits /s symbol). The minimum sequence of symbols will be then 127. This

means that the minimum TW for this signal will be:

TW = 127 / 25.776 x 106 = 4.927s

This will result in a repetition rate of 203KHz and, therefore, quantization noise will show up as

harmonics of that frequency. One way to reduce the average power of these tones is by increasing the

sampling rate when possible, as the noise will be spread over a higher BW. When this is not feasible, it

is possible to reduce the average power by reducing the repetition rate. This cannot be done by simply

appending multiple copies of exactly the same waveform in the memory, because this will not change

periodicity. There are two ways to handle this situation when direct RF carrier generation is involved:

1. Calculating a new waveform where the multiple repetitions of the same basic waveform are not

sampled in the very same sampling instants. A way to make sure this happens would be

selecting a waveform length, which does not have any common divide with the number of

symbols in a basic sequence. This way, the signal will not repeat exactly in the same way within

the waveform, and the noise will be spread over a larger number of tones.

2. The second technique is dithering. In this scheme, the same basic sequence of samples is

repeated, and then a random number (1/2 quantization level peak-to-peak amplitude is

enough) for all the samples. As a consequence, quantization noise will not repeat until the

complete segment is looped, and the average level of the quantization tones will be reduced,

at the expense of increasing the overall noise in the signal.

Procedure #1 is better as it does not increase the noise power in the system. The best way to proceed

is selecting the number of repetitions of the same symbols sequence to be a prime number, and then

calculate a suitable sampling rate and waveform length so the latest is not a multiple of the prime

number. In this way, no exact repetitions of the same sample sequence will occur in the segment, and

the repetition rate for the quantization noise will be reduced by the same prime number factor. If we

apply this approach to the AWG used in the previous example and the DVB-S test signal mentioned

above, we can calculate the generation parameters for the maximum FDAC = 9GS/s. The TW for one

consistent sequence of symbols (127 QPSK symbols) is around 4.927uS. If we use the exact numbers

and the target sample rate for 101 repetitions (prime number), the waveform length will be:

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 17

WL = 4,478,701 samples

We will use the closest multiple of 64 (the WL granularity for this AWG) lower than the above WL:

WL’ = 4,478,656 samples

Selecting a lower number is convenient as the Sampling rate can be reduced a little bit (from 9GHz down

to 8.999909572 GHz) to keep the right baud rate. Reducing the effects of quantization noise in this

signal, when using an AWG equipped with a DUC, is much easier as the waveform going to the DAC is

not the one in the waveform memory, but the mixing of it with the real-time quadrature sinewaves

being generated by the NCO. If the frequency set in the NCO is not an exact integer multiple of the

repetition frequency of the sequence in the waveform memory, the sequence will not be the same all

the time and, as a consequence, quantization noise will be spread densely over the full spectrum and

no noise tones will be visible. Repetition period for the output samples after the DUC block can range

from seconds until weeks, so at the operational level, it will behave as an ideal white noise without

increasing the overall noise level. In this case, it means that the WL could be kept to the minimum

44,288 samples.

Processing Gain, Effective Bits, and DAC Modes

Probably, the most important bottleneck for high-speed arbs is the DRAM to DAC interfacing. Even

when using massive parallelization, the sustained transfer rate to the DAC is limited. This results

sometimes in a trade-off between DAC resolution and sample rate as the product is the sustained data

rate between memory and DAC. For a 9GS/s, 8-bit resolution DAC, transfer rate is 9GByte/s. For a

2.5GS/s, 16-bit DAC, data rate will be 5GByte/s. And sometimes this is not the full picture, as some other

information may be transferred concurrently from the waveform memory such as markers, so some

instruments may lose resolution when markers are activated, as transfer rate has reached the maximum

allowed by the implemented architecture.

DUCs also have an impact on this issue as they incorporate interpolators. When DUCs are implemented

right in the DAC block, waveform data being transferred to the DAC block is reduced by half of the

interpolation factor (for IQ modulation). If the waveform data transfer rate for a 9GS/s DAC is limited

to 5GByte/s it is possible to transfer up to 1.25GSample/s 16-bit IQ sample pairs (so Modulation BW

goes beyond 1GHz). The DUC using an 8x interpolation factor can handle such rates when sample rate

is 9GS/s, while direct generation of the RF carrier would be limited to 8-bit samples over 2.5GS/s.

Interpolation opens the door to use higher than necessary sampling rates and this results in what is

called “processing gain”. Basically, oversampling a waveform by a factor of 4, is like using a DAC with

one additional bit of resolution at the original sampling rate (fig. 3.3).

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 18

Figure 3.3: Near-Ideal Interpolation (Oversampling) is part of digital up-conversion. Oversampling results in a reduction of the
quantization noise power spectral density as the same. Increasing sample rate by a factor of two results in a 3dB reduction in the
noise power over the signal’s BW, so it is like increasing effective number of bits (ENoB) by 0.5.

Simultaneous RF and non-RF signals synchronous generation (Envelope Tracking)

AWGs are general purpose signal generation devices. The DUC mode can be used to generate RF signals

conveniently, but the same device must be capable of generating signals through direct conversion, so

non-RF signals with DC components can be generated as well. Some applications may require the

synchronous generation of both kinds of signals (i.e. envelope tracking or Qubit Control, fig. 3.4). In

some AWGs, though, the DUC mode can be activated or deactivated for all the channels simultaneously.

Fortunately, it is possible to generate baseband (non-RF) signals through the DUC as well. The procedure

is quite simple as it requires setting both the frequency and the initial phase for the NCO to zero, and

then use the I samples (Q samples can be set to “all zeros” to reduce digital noise) as the non-RF signal

to be generated. As the waveform will go through the same processing blocks in the DUC (oversampling,

low-pass filtering, etc.) the synchronization and sampling rate for all the signals, RF and non-RF, will be

consistent.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 19

Figure 3.4: AWGs are a very versatile tool as they can generate any kind of signal. In particular, they can generate RF and baseband
signals simultaneously. The Tabor P9484M is a good example. Here two channels generate two different AC-Coupled RF signals,
and the other two channels generate the corresponding synchronous DC-Coupled “envelope tracking” signals to properly handle
a high-efficiency RF Power Amplifier.

Waveform normalization and quantization for DUCs

Baseband IQ signals must be calculated, processed, and transferred in order to generate valid RF signals

using a DUC. Especial care must be taken when building those waveforms. First, although the I and Q

waveforms can be handled as a pair of waveforms, it is important to keep in mind that those are, in

fact, just a single waveform made of complex numbers, and it must be handled in that way. One

important issue in AWGs is obtaining the maximum SNR without distorting the signal. This is even more

important for RF signals. The usual practice is using the full DAC range, so waveforms are normalized to

that range and then the required amplitude and DC level is set using the output voltage and offset

controls (fig. 3.5). This is also true when using the DUC. However, the full range of the DAC is now

connected to magnitude of the complex signal and not to the amplitude of each of the real and

imaginary (or I and Q) components. Normalization to the DAC range must be carried out over the peak

magnitude of the complex signal so both signals must be normalized together.

Another issue is the DAC range itself. The DUC interprets the midrange level as 0.0 so the available DAC

range goes from 1 (instead of 0) up to 2N – 1. Using the “all zeros” level as the extreme value would

result in a small DC offset in both the I and Q components (fig. 3.6). This DC offset will show up as a

small residual carrier impairment (visible in a Spectrum Analyzer even for a 16-bit sample). It will also

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 20

result in a residual RF carrier generated between RF pulses or bursts. Keep in mind that one of the

advantages of the DUC architecture is that residual carrier can be avoided and that the “OFF” state for

pulsed RF is perfect.

Figure 3.5: When using DUCs in AWGs, I and Q samples are stored in the waveform memory. I and Q samples are combined
through the IQ modulator. It is important to avoid DAC clipping as this results in a heavy non-linear distortion, spectral growth,
and poor modulation quality. In order to avoid clipping, the I and Q waveforms must be normalized in a way that the maximum
peak is always below the DAC range.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 21

Figure 3.6: The best way to leverage the full dynamic range of a DAC is by normalizing the range of the waveform so it covers all
the quantization levels of the DAC (a). This approach is not perfect when waveform data is normalized for DUC use. It is important
to keep perfect symmetry around the “zero level (2N-1 level) so the “all zeros” level (the minimum) must be avoided in order to
remove an unwanted residual carrier (b).

Generating Multiple Modulated Carries Through a DUC

Most times DUC are used to generate a single modulated carrier and the carrier frequency is set only

by the NCO settings. As previously mentioned, traditional analog IQ modulators are difficult to align,

and they generate multiple impairments. Many of these impairments generate noise (or self-

interference) within the BW Occupied by the signal. Quadrature errors result in unwanted images

(frequency components in one of the sidebands generate interfering signals in the opposite sideband)

and components such as carrier feed-through (therefore some OFDM-based standards do not use the

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 22

central carriers). One way to minimize the effects of those impairments is by shifting the complex

baseband signals (fig. 3.7) by rotating them so the final I’ and Q’ waveforms are calculated as follows:

I’ = I x cos (2 FS t) - Q x sin (2 FS t)

Q’ = I x sin (2 FS t) + Q x cos (2 FS t)

FS can be positive (so the Fc > FNCO) or negative (so the Fc < FNCO). If the different FS are properly selected,

signals will fit in the available modu higher than half of the modulated waveform BW, no image will

overlap and the carrier feed-through will be out of the useful signal. This methodology can be used to

combine multiple IQ modulated baseband waveforms so the DUC can generate multiple, independent

modulated signals over the available Modulation BW. There is no need to use these tricks to avoid such

impairments in DUCs as all the modulation process is numerical, and impairments such as quadrature

error and imbalance, and carrier feed-through are, by definition, non-existing. However, when an

external IQ modulator is necessary (i.e. to reach higher carrier frequencies), the rotating I and Q

components can be generated using a two-channel AWG equipped with built-in DUCs. To do so, just set

the two channels to work in the regular DUC mode and set the I component for channel 1 with the I

component of the complex signal and the Q component to “all zeros”. Then set the Q component of the

complex signal of channel 2 with the Q component of the complex signal and the I component to “all

zeros”. Next set the same frequency and phase for each NCO. Frequency must be set to the desired

positive frequency shift. For negative shifts, just swap the target for the I and Q components (or the

target component for each channel). This arrangement only works if all the NCOs are phase coherent.

The same approach can be used by numerical IQ modulators (or DUC) so IQ signals may be shifted in

frequency by rotating the waveform data being downloaded to the waveform memory. As there is no

need to do so to avoid IQ modulation impairments in DUCs, the only reason to do so is generating

multiple RF signals at the same time within the modulation BW of the DUC (i.e. multi-tone signals). Keep

in mind, though, in this case the available DAC range must be shared by all the RF signals, so average

power will be reduced as the number of signals grow.

Figure 3.7: Multiple independent, modulated signals can be generated using a single DUC if the full bandwidth of the combined
signals fits in the available Modulation Bandwidth (MBW) of the IQ modulator.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 23

4 Implementation of the DUC in the Proteus
Family

Block Diagram

The Proteus family of products (fig. 4.1) incorporates DUC in the P258X (optional) and P948X products,

regardless of the platform (B, D, or M). The main differences between the P258X and P948X are maximum

sample rate (2.5GS/s vs. 9GS/s) and the 8-bit DAC mode available in the P948X products so direct

generation without interpolation or digital up-conversion is possible up to 9GS/s. The PXIe modules can

incorporate two or four channels. Channels are grouped in pairs (ch1&ch2, ch3&ch4) so two channel

instruments incorporate one pair while four channel instruments incorporate two pairs. Each pair shares

the same dynamic memory bank, so the connection is shared among the channels. The overall maximum

transfer rate for each pair is 10GBytes/s. This means that 16-bit samples can be transferred to all channels

up to 2.5GS/s while the 8-bit mode allows for 9GS/s transfer to one of the channels in the pair (Ch1 for

the first pair and Ch3 for the second pair).

Figure 4.1: Block diagram of the Tabor Proteus P2584M and P9484M when used in the DUC mode. Notice the availability of two
independent DUCs per channel. Each DUC can be fed with their one IQ baseband waveforms. There are several IQ modes using the
available DUCs in different ways to offer more carriers per channel or more modulation bandwidth.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 24

DUC Modes

When it comes to the DUC, the block diagram shows that there are two independent DUCs for each

channel (fig. 4.2). Each DUC incorporates its own NCO so the carrier frequency can be set to different

frequencies all over the tuning frequency range (DC up to the current sample rate). Interpolators can

implement interpolation factors 1x, 2x, 4x, and 8x. One (ONE Mode) or both (TWO mode) DUCs can be

used at a given moment. However, the maximum sample rate and modulation BW depends on the

interpolation factor and the number of DUCs being used. Additionally, there is a switchable connection

between the output of the DUC block in one of the channels of each pair and an adder connected to the

output of the other channel of the same pair, so the combination can be fed to the corresponding DAC

while the other DAC remains inactive (HALF Mode). In this way, modulation bandwidth and data rate can

be doubled as I data is fed only to the DUC of one of the channels while Q data is fed to the other. In this

mode, just the I path for each DUCs is used while the two NCOs are set to the same frequency, while the

relative phase is set to 90o. In other words, each DUC block generates half of the IQ modulation.

The processing chain in the DUC uses 16-bit integer arithmetic and the DUC only works in the 16-bit mode,

so all the baseband waveforms are defined as a set of 16-bit IQ pairs. The resolution of the DAC itself is

14-bit. It is important to use a higher resolution for samples and all calculations in order to keep calculation

noise (coming from integer arithmetic rounding in the interpolation FIR, multiplier, and adders) below the

resolution of the DAC, so the quality and RF performance of the final signal is not degraded. FIR filters in

the interpolator are optimized for usable bandwidth, flatness, and stop-band attenuation. The number of

coefficients depends on the interpolation factor being applied. The filter roll-off is designed to maximize

the usable bandwidth so the maximum attenuation is not reached under the Nyquist frequency for the

waveform before interpolation. Instead, the maximum attenuation band starts close to the image

frequency of the maximum frequency of the flat-response band. It is necessary, then, to make sure that

the maximum frequency component of the waveform before interpolation is not larger than this

frequency.

There is a numerical 6dB independently switchable attenuator at the output of each one of the two DUCs

in the Proteus’ DUC block. The main purpose of this attenuator is avoiding clipping when the DUC is

operated in the TWO mode. As two IQ modulated signals are added together and NCOs are independent,

the worst peak for the combined RF signal will be twice the one for each of the component RF signals. If

both IQ waveform are normalized for the maximum DAC range, attenuating both signals by 6dB before

adding them, will avoid any chance of clipping the DAC. At first sight, the same result could be obtained

by dividing all the I and Q samples by two. However, although this method would avoid clipping as well,

the effective resolution of the baseband data would be reduced to 15-bits, and calculation noise would

be noticeably higher than calculating each RF signal with 16-bit, and then rounding the result to 15-bit

(dividing by two) before the adder. This is a simple but effective approach when peak power is the same

for both RF signals. However, when power (or peak-to-peak amplitude is different), then a joint

normalization may be better. Keep in mind that sampling for both IQ signals (and waveform length as

well) is the same for both DUC in the TWO mode. The normalization procedure must find the maximum

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 25

Figure 4.2: There are 4 DUC modes in the Tabor Proteus product. One of them, the NCO mode (a), uses the internal NCOs to
generate sinewaves with controlled frequency and phase. The ONE mode (b) uses just one of the NCOs for each channel
while the TWO mode (c) uses both, although it reaches half of the modulation bandwidth. Finally, the HALF mode (d)
combines one DUC from each channel pair to double the modulation bandwidth for half the channels.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 26

peak of the combined envelope waveform and make sure that the worst case never goes beyond the

clipping level. If the overall DAC range is normalized to the -1.0/+1.0 range, if any of the resulting RF the

0.5/+0.5 limits, then the resulting samples can be multiplied by two and then activate the numerical 6dB

attenuator for that IQ pair so this will optimize signal quality without modifying the relative power of both

signals.

Phase can also be set for each NCO. This is the initial phase for the NCO when operation starts. As the

starting instant for all the NCOs in pair, module, or system is deterministic, the phase control allows for

relative phase adjustment of all the carriers. This is especially meaningful when the carrier frequency is

the same for all the channels. As all the NCOs are referred to the sampling clock, and this can be based in

the same frequency and time references. The initial phase will be kept indefinitely, easing applications

where relative phase control is mandatory, such as Phase-Array Radars, MIMO, Beamforming, or

Quantum Computing. Phase, like frequency, can be changed “on the fly”. This means that a new relative

phase setting can be set (i.e. to change the direction of a beam) without interrupting signal generation,

unlike some other DUC-equipped AWGs in the market.

The Proteus DUC can also be used in the NCO mode. In this mode, no IQ data is read, and the only working

elements in the DUCs are the NCOs. This mode can be used to generate multiple CW signals without the

need to define a “dummy” DC IQ waveform. When set to the same frequency, all the NCOs are coherent,

and the relative phase can be controlled accurately, making this multi-channel CW RF generator highly

suited for applications as Phase Array Radar, Beamforming, or any application where multiple L.O. with

tightly controlled relative phases.

IQ Waveform Data Formats in Proteus

Once calculated, normalized, and scaled, IQ complex waveforms must be quantized and concerted to 16-

bit unsigned integers, before being transferred to the target waveform memory. As previously mentioned,

each channel pair (two of them in a single PXI module) shares the same DDR bank with a capacity of up to

16GSamples (8-bit mode) or 8GSamples (16-bit mode). Each bank can be segmented in up to 64K

segments. Waveform segments are the real target for waveforms being downloaded. Real waveforms are

stored as a series of samples read sequentially (“true arb” architecture). However, complex (IQ

waveforms) cannot always be handled as two independent segments, as each channel can only access

one segment at a time. The solution for this issue is reading complex waveforms as a single entity, so both

components are stored in the same segment. The simplest way to do it, and the best one to minimize

intermediate buffering, is storing IQ waveforms as interleaved pairs (I1, Q1, I2, Q2…, In, Qn). This is the

format used for the ONE DUC mode in Proteus (fig. 4.3). This is the formatting procedure to follow:

1. Calculate I and Q waveforms

2. Joint normalization

3. Interleaving (I, Q, I, Q)

4. Download to target segment

5. Segment size = 2 x I/Q waveform size

6. Select segment for target channel (1-4)

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 27

Figure 4.3: IQ waveform data must be stored properly for play-back. In the ONE mode, data must be arranged as a single segment
with the I and Q samples interleaved.

The maximum overall data rate for this mode is 2.5GS/s (16-bit) so the maximum sample rate for each

component would be 1.25GS/s (1.125GS/s for 9GS/s DAC conversion rate and 8x interpolation) and the

resulting modulation BW would be slightly larger than 1.0 GHz.

The TWO mode is more complex, as two sets of IQ pairs must be transferred to a given channel. The

resulting two sets of IQ pairs must be doubled interleaved to be downloaded to a single segment (fig. 4.4).

The binary data to be sent to the segment must be properly formatted, so the transfer to the waveform

memory is aligned with the DUC block requirements. This is the sequence of formatting actions to be

carried out:

1. Arrange the 16-bit samples in the I1, Q1, Q2, I2 sequence

2. Split all the 16-bit samples in two bytes

3. For each group of four samples, take the MSB bytes following the interleaving sequence shown

above (I1M, Q1M, Q2M, I2M)

4. You must perform the same operation for the LSB bytes (I1L, Q1L, Q2L, I2L)

5. Obtain the final waveform data by interleaving the MSB and LSB groups built in the previous steps

(I1M, I1L, Q1M, Q1L, Q2M, Q2L, I2M, I2L)

As the overall data rate (5GBytes/s) stands here as well, the maximum sampling rate for each one of the

IQ components is 625MS/s and modulation BW will be close to 600MHz. However, as interpolation factor

depends on the ratio between the DAC sampling rate and the baseband interpolation ratio, and currently

the maximum interpolation factor implemented in Proteus is 8x, the maximum DAC sampling rate

supporting the two mode is 625 * 8 = 5,000MS/s = 5GS/s. Future product improvements will allow for

higher interpolation factors (16x) so the TWO mode will be feasible up to the maximum DAC sampling

rate (9GS/s).

Finally, the HALF mode uses half of one of the DUCs in each channel of a given pair, using just one of the

DACs after adding the output of each block. In this case, waveform data is stored as two independent

segments in the same DDR bank and segment assignment is done as a direct real only waveform to each

participating channel. This is the formatting procedure:

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 28

Figure 4.4: The TWO mode requires interleaving the IQ1 and IQ2 sample pairs together in such a way the DUC can use the data
immediately and latency is minimized. Here, the dual-level interleaving process is shown.

1. Calculate I and Q waveforms

2. Joint normalization

3. Download I waveform to segment A

4. Download Q waveform to segment B

5. Segment size = I waveform size = Q waveform size

6. Select Segment A for target active channel (1 or 3)

7. Select Segment B for associated phantom channel (2 or 4)

NCO for each channel must be set to the same frequency and phase. When the mode is activated, the

“phantom” channels will not output any signal, and the active channel will work exactly as it was in the

ONE mode, although the I and Q quadrature modulated components come from different DUCs (each one

using a different, but synchronized and coherent, NCO). The main advantage of this mode consists in

increasing by a factor of 2 (up to 2.5GS/s) the sampling rate for each one of the components, so

modulation BW goes beyond 2.3GHz. At a 9GS/s DAC sampling rate, and using the x4 interpolation factor,

baseband sampling rate will be 2.25GS/s so modulation BW will go beyond 2GHz.

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 29

5 Appendix A – DUC Programming Example
The MATLAB script below calculates an IQ baseband signal and then uses the DUC to generate an RF

modulated signal. It is possible to select the analog or digital modulation scheme and the parameters

for it. It also allows for the selection of the Carrier Frequency.

% EXAMPLE FOR IQ MODE ONE IN PROTEUS USING VISA
%==
% This example sets the IQ mode for the designated channel and downloads a
% complex(IQ) waveform to be applied to the built-in IQ modulator in the
% 'ONE' Mode. Analog and Digital Modulations are supported.

clc;
clear;

% Carrier Frequency
cfr = 1200E+06;
symbolRate = 150E6;
rollOff = 0.15;
samplingRate = 9E9; % change to 2.5E9 for P258X

% Set offset to any positive or negative frequency to shift carrier
fOffset = 0.0;
% Set initial phase for NCO
phase = 0.0 ;
%Set Target Channel
channel = 1;
%Set Target Segment
segment = 1;
% select reversed spectrum for generation in second Nyquist Zone
reverse = false;
% Boost Output Power by 6dB
apply6db = true;

fprintf(1, 'INITIALIZING SETTINGS\n');

% Communication Parameters
connStr = '192.168.1.48'; % your IP here
paranoia_level = 1; % 0, 1 or 2

%% Create Administrator
inst = TEProteusInst(connStr, paranoia_level);
fprintf('\n');

res = inst.Connect();
assert (res == true);

% If sampling rate lower than 2.5GHz, NCO frequency set to 500MHz
if samplingRate <= 2.5E+9
 cfr = 500E+6;
end

%Wfm Calculation
fprintf(1, 'Calculating WAVEFORM\n');

%ANALOG & DIGITAL MODULATION SETTINGS
% modType Analog:
% -1 Gaussian Pulse
% 0 AM
% 1 FM
% 2 PM
% 3 SSB;
% 4 CHIRP;
% modType Digital:
% 5 QPSK
% 6 QAM16
% 7 QAM32
% 8 QAM64
% 9 QAM128
%10 QAM256
%11 QAM512
%12 QAM1024
modType = 5;

% See CalculateAnalogModWfm Function to know the meaning of the param1 and
% param2 variables depending on the modulation scheme.
param1 = 100E-9; %90.0; %Peak Frequency Deviaton in Hz
param2 = 20E-9; %Modulaiton frequency in HZ
minCycles = 1; %Prime number is better
% Parameters for Digital Modulation

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 30

numOfSymbols = 16384;

% Interpolation according to DUC interpolation factor
interpol = 8; %8X interpolation factor
% Waveform granularity applies to the combined I/Q waveform so actual
% granularity for each component is granul / 2.
gCorr = 2;
intCorr = 1;

if modType <= 3
 % Calculate analog modulation I/Q waveforms
 wfmIq = CalculateAnalogModWfm(modType,...
 minCycles,...
 samplingRate,...
 interpol / intCorr,...
 granul / gCorr,...
 param1,...
 param2);
else
 % Calculate QPSK/QAM I/Q Waveforms
 wfmIq = CalculateDigitalModWfm(modType,...
 numOfSymbols,...
 symbolRate,...
 rollOff,...
 samplingRate,...
 interpol / intCorr);
 % wfmIq length is not adjusted for granularity to optimize accuracy for
 % symbol rate. Howeverm symbol rate must be adjusted for signal loop
 % consistency. Actual Symbol Rate must be calculated and used in
 % analysis of the signal.
 actualSymbR = samplingRate / interpol * numOfSymbols / length(wfmIq);
 fprintf('\nActual Symbol Rate = to: %d\n', actualSymbR);
end

wfmIq = trimGran(wfmIq, granul / gCorr);

% I and Q waveforms
myWfmI = real(wfmIq);
myWfmQ = imag(wfmIq);
clear wfmIq;
% Negative Q waveform for inverse spectrum
if reverse
 myWfmQ = -myWfmQ;
end

% Frequency Offset applied
[myWfmI, myWfmQ] = ApplyFreqOffset(fOffset,...
 samplingRate / interpol,...
 myWfmI,...
 myWfmQ);

% I/Q data interleaving to a single array for downloadg
fprintf(1, 'I/Q INTERLEAVING\n');
% Envelope normalization to avoid DAC clipping
[myWfmI, myWfmQ] = NormalIq(myWfmI, myWfmQ);
myWfm = Interleave(myWfmI, myWfmQ);
clear myWfmI myWfmQ;
% If necessary, wfm repetated for waveform granularity
myWfm = trimGran(myWfm, granul);

% SETTING AWG
fprintf(1, 'SETTING AWG\n');

% Reset AWG
inst.SendCmd('*CLS');
inst.SendCmd('*RST');

% Set sampling rate for AWG to maximum.
inst.SendCmd([':FREQ:RAST ' num2str(2.5E9)]);
inst.SendCmd(sprintf(':INST:CHAN %d', channel));
% Interpolation factor for I/Q waveforms set to X8
inst.SendCmd(':SOUR:INT X8');
inst.SendCmd([':FREQ:RAST ' num2str(samplingRate)]);
% DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE'
inst.SendCmd(':MODE DUC');
inst.SendCmd(':IQM ONE');

% Waveform Downloading
% *******************
inst.SendCmd(':TRAC:DEL:ALL');
fprintf(1, 'DOWNLOADING WAVEFORM\n');
res = SendWfmToProteus(inst, channel, segment, myWfm, 16);
fprintf(1, 'WAVEFORM DOWNLOADED!\n');
clear myWfm;

% Select segment for generation
fprintf(1, 'SETTING AWG OUTPUT\n');
inst.SendCmd(sprintf(':FUNC:MODE:SEGM %d', segment))
% Output volatge set to MAX
inst.SendCmd(':SOUR:VOLT MAX');

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 31

% 6dB IQ Modulation gain applied
if apply6db
 inst.SendCmd(':NCO:SIXD2 ON');
else
 inst.SendCmd(':NCO:SIXD2 OFF');
end
% NCO frequency and phase setting
inst.SendCmd(sprintf(':NCO:CFR1 %d', cfr));
inst.SendCmd(sprintf(':NCO:PHAS1 %d', phase));
% Activate outpurt and start generation
inst.SendCmd(':OUTP ON');

fprintf(1, 'SETTING SAMPLING CLOCK\n');
% Set sampling rate for AWG as defined in the preamble.
inst.SendCmd([':FREQ:RAST ' num2str(samplingRate)]);

% It is recommended to disconnect from instrument at the end
inst.Disconnect();
clear inst;
clear;
fprintf(1, 'END\n');

function finalWfm = trimGran(inWfm, granularity)
 % trimGran - Adjust wfm length for granularity
 %
 % Synopsis
 % finalWfm = trimGran(inWfm, granularity)
 %
 % Description
 % Repeat waveform the minmum number of times to meet the
 % waveform length granularity criteria
 %
 % Inputs ([]s are optional)
 % (double) inWfm Input waveform
 % (int16) granularity
 %
 % Outputs ([]s are optional)
 % (double) finalWfm Adjusted waveform

 baseL = length(inWfm);
 finaL = lcm(baseL, granularity);

 finalWfm = zeros(1, finaL);
 pointer = 1;

 while pointer < finaL
 finalWfm(pointer : (pointer + baseL -1)) = inWfm;
 pointer = pointer + baseL;
 end

end

function [rotI, rotQ] = ApplyFreqOffset(fOffset, sampleRate, wfmI, wfmQ)

 wfmL = length(wfmI);
 fRes = sampleRate / wfmL;
 fOffset = round(fOffset / fRes) * fRes;

 cplexWfm = wfmI + 1i * wfmQ;
 clear wfmI wfmQ;
 angleArray = 0:(wfmL - 1);
 angleArray = 2 * pi * fOffset * angleArray;
 angleArray = angleArray / sampleRate;

 angleArray = exp(1i * angleArray);

 cplexWfm = cplexWfm .* angleArray;
 clear angleArray;

 rotI = real(cplexWfm);
 rotQ = imag(cplexWfm);
end

function [normI, normQ] = NormalIq(wfmI, wfmQ)

 maxPwr = max(wfmI.*wfmI + wfmQ .* wfmQ);
 maxPwr = maxPwr ^ 0.5;

 normI = wfmI / maxPwr;
 normQ = wfmQ / maxPwr;

end

function outWfm = Interleave(wfmI, wfmQ)

 wfmLength = length(wfmI);
 if length(wfmQ) < wfmLength

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 32

 wfmLength = length(wfmQ);
 end

 %wfmLength = 2 * wfmLength;
 outWfm = zeros(1, 2 * wfmLength);

 outWfm(1:2:(2 * wfmLength - 1)) = wfmI;
 outWfm(2:2:(2 * wfmLength)) = wfmQ;
end

function result = SendWfmToProteus(instHandle,...
 channel,...
 segment,...
 myWfm,...
 dacRes)

 %Select Channel
 instHandle.SendCmd(sprintf(':INST:CHAN %d', channel));
 instHandle.SendCmd(sprintf(':TRAC:DEF %d, %d', segment, length(myWfm)));
 % select segmen as the the programmable segment
 instHandle.SendCmd(sprintf(':TRAC:SEL %d', segment));

 % format Wfm
 myWfm = instHandle.Quantization(myWfm, dacRes);

 % Download the binary data to segment
 prefix = ':TRAC:DATA 0,';

 if dacRes == 16
 instHandle.SendBinaryData(prefix, myWfm, 'uint16');
 else
 instHandle.SendBinaryData(prefix, myWfm, 'uint8');
 end

 result = length(myWfm);
end

function waveform = CalculateAnalogModWfm(modType,...
 minCycles,...
 sampleRate,...
 interpol,...
 granul,...
 param1,...
 param2)

 %ANALOG MODULATION WAVEFORM CALCULATION
 % modType = -1, GAUSSIAN; 0, AM; 1, FM; 2, PM; 3, SSB;

 %GAUSSIAN PULSE SETTINGS
 pulseLength = param1;
 pulseWidth = param2;

 %AM SETTINGS
 amModIndex = param1; %Modulation Index in %
 amModFreq = param2; %Modulation frequency in HZ

 %FM SETTINGS
 fmFreqDev = param1; %Peak Frequency Deviaton in Hz
 fmModFreq = param2; %Modulaition frequency in HZ

 %PM SETTINGS
 pmPhaseDev = param1; %Peak Phase Deviaton in Rads
 pmModFreq = param2; %Modulation frequency in HZ

 %SSB SETTINGS
 ssbModFreq = param2; %Modulation frequency in HZ

 %CHIRP SETTINGS
 chirpSweepRange = param1;
 chirpSweepTime = param2;

 %Waveform Length Calculation
 modFreq = amModFreq;

 if modType == -1
 modFreq = 1.0 / param1;
 elseif modType == 1
 modFreq = fmModFreq;
 elseif modType == 2
 modFreq = pmModFreq;
 elseif modType == 3
 modFreq = ssbModFreq;
 elseif modType == 4
 modFreq = 1 / chirpSweepTime;
 end

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 33

 actualSR = sampleRate / interpol;
 if modType ~= 4
 numOfSamples = round(actualSR / abs(modFreq / minCycles));
 else
 numOfSamples = round(actualSR / abs(modFreq));
 end
 totalNumOfSamples = numOfSamples;

 % As samples sent to the instrument are twice the number of complex
 % samples, granul must be defined as half the actual number

 numOfReps = 1;

 while modType ~= 4 && mod(totalNumOfSamples, granul) ~= 0
 totalNumOfSamples = totalNumOfSamples + numOfSamples;
 numOfReps = numOfReps + 1;
 end

 numOfSamples = totalNumOfSamples;
 fRes = actualSR / numOfSamples;

 % Round modFreq to the nearest integer number of Cycles

 modFreq = round(modFreq / fRes) * fRes;

 %Waveform calculation
 fprintf(1, 'WAVEFORM CALCULATION\n');

 waveform = 0: (numOfSamples - 1);
 waveform = (1 / actualSR) .* waveform;
 waveform = waveform - (numOfSamples / (2 * actualSR));

 if modType == -1
 sigma = pulseWidth /(2 * (2 * log(2)) ^0.5);%2.35;
 waveform = exp(-0.5 * (waveform/sigma).^2);
 waveform = waveform + 1i * waveform;
 elseif modType == 0
 waveform = 1 + amModIndex/100 .* sin(2 * pi * modFreq * waveform);
 waveform = waveform + 1i * waveform;
 elseif modType == 1
 fmFreqDev = round(fmFreqDev / fRes) * fRes;
 freqInst = fmFreqDev / modFreq * sin(2 * pi * modFreq * waveform);
 waveform = cos(freqInst) + 1i * sin(freqInst);
 clear freqInst;
 elseif modType == 2
 phaseInst = pmPhaseDev * sin(2 * pi * modFreq * waveform);
 waveform = cos(phaseInst) + 1i * sin(phaseInst);
 clear phaseInst;
 elseif modType == 3
 waveform = 2 * pi * modFreq * waveform;
 waveform = cos(waveform) + 1i * sin(waveform);
 elseif modType == 4
 chirpSweepRange = chirpSweepRange / 2;
 chirpSweepRange = round(chirpSweepRange / fRes) * fRes;
 freqInst = (actualSR * chirpSweepRange / numOfSamples) * waveform;
 freqInst = 2 * pi * freqInst .* waveform;
 waveform = cos(freqInst) + 1i * sin(freqInst);
 clear freqInst;
 waveform = trimGran(waveform, granul);
 end

 % waveform conditioning:
 waveform = waveform./((mean(abs(waveform).^2))^0.5);

end

function [dataOut] = CalculateDigitalModWfm(modType,...
 numOfSymbols,...
 symbolRate,...
 rollOff,...
 sampleRate,...
 interpol)

 % modType Modulation
 % 5 QPSK
 % 6 QAM16
 % 7 QAM32
 % 8 QAM64
 % 9 QAM128
 %10 QAM256
 %11 QAM512
 %12 QAM1024

 if modType == 5
 bitsPerSymbol = 2;
 elseif modType == 6
 bitsPerSymbol = 4;
 elseif modType == 7
 bitsPerSymbol = 5;

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 34

 elseif modType == 8
 bitsPerSymbol = 6;
 elseif modType == 9
 bitsPerSymbol = 7;
 elseif modType == 10
 bitsPerSymbol = 8;
 elseif modType == 11
 bitsPerSymbol = 9;
 elseif modType == 12
 bitsPerSymbol = 10;
 else
 bitsPerSymbol = 2;
 end

 % Waveform Length Calculation
 sampleRate = sampleRate / interpol;

 [decimation, oversampling] = reduceFraction(symbolRate, sampleRate);

 % Create IQ for QPSK/QAM
 % accuracy is the length of the shaping filter
 accuracy = 64;
 fType = 'sqrt'; % 'normal' or 'sqrt'
 % Get symbols in the range 1..2^bps-1
 data = getRnData(numOfSymbols, bitsPerSymbol);
 % Map symbols to I/Q constellation locations
 [dataI, dataQ] = getIqMap(data, bitsPerSymbol);
 % Adapt I/Q sample rate to the AWG's

 dataI = expanData(dataI, oversampling);
 dataQ = expanData(dataQ, oversampling);
 % Calculate baseband shaping filter
 rsFilter = rcosdesign(rollOff,accuracy,oversampling, fType);
 % Apply filter through circular convolution
 dataI = cconv(dataI, rsFilter, length(dataI));
 dataQ = cconv(dataQ, rsFilter, length(dataQ));

 dataI = dataI(1:decimation:length(dataI));
 dataQ = dataQ(1:decimation:length(dataQ));
 % Output waveforfm must be made of complex samples
 dataOut = dataI + 1i * dataQ;
end

function dataOut = getRnData(nOfS, bPerS)

 maxVal = 2 ^ bPerS;
 dataOut = maxVal * rand(1, nOfS);
 dataOut = floor(dataOut);
 dataOut(dataOut >= maxVal) = maxVal - 1;
end

function [symbI, symbQ] = getIqMap(data, bPerS)

 if bPerS == 5 % QAM32 mapping
 lev = 6;
 data = data + 1;
 data(data > 4) = data(data > 4) + 1;
 data(data > 29) = data(data > 29) + 1;

 elseif bPerS == 7 % QAM128 mapping
 lev = 12;
 data = data + 2;
 data(data > 9) = data(data > 9) + 4;
 data(data > 21) = data(data > 21) + 2;
 data(data > 119) = data(data > 119) + 2;
 data(data > 129) = data(data > 129) + 4;

 elseif bPerS == 9 % QAM512 mapping
 lev = 24;
 data = data + 4;
 data(data > 19) = data(data > 19) + 8;
 data(data > 43) = data(data > 43) + 8;
 data(data > 67) = data(data > 67) + 8;
 data(data > 91) = data(data > 91) + 4;
 data(data > 479) = data(data > 479) + 4;
 data(data > 499) = data(data > 499) + 8;
 data(data > 523) = data(data > 523) + 8;
 data(data > 547) = data(data > 547) + 8;
 else
 lev = 2 ^ (bPerS / 2); % QPSK, QAM16, QAM64, QAM256, QAM1024
 end

 symbI = floor(data / lev);
 symbQ = mod(data, lev);
 lev = lev / 2 - 0.5;
 symbI = (symbI - lev) / lev;
 symbQ = (symbQ - lev) / lev;

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 35

end

function [outNum, outDen] = reduceFraction(num, den)
%reduceFraction Reduce num/den fraction
% Use integers although not mandatory
 num = round(num);
 den = round(den);
 % Reduction is obtained by calcultaing the greater common divider...
 G = gcd(num, den);
 % ... and then dividing num and den by it.
 outNum = num / G;
 outDen = den / G;
end

function dataOut = expanData(inputWfm, oversampling)

 dataOut = zeros(1, oversampling * length(inputWfm));
 dataOut(1:oversampling:length(dataOut)) = inputWfm;

end

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 36

6 Appendix B – Proteus Comm Library
This is a MATLAB function library required by the script in Appendix A.

% ===
% Copyright (C) 2016-2021 Tabor-Electronics Ltd <http://www.taborelec.com/>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% ===
% Author: Nadav Manos, Fractions by Joan Mercade
% Date: May 17, 2021
% Version: 2.0.1

classdef TEProteusInst < handle
 % TEProteusInst: NI-VISA based connection to Proteus Instrument.

 properties
 ParanoiaLevel = 1; % Paranoia level (0:low, 1:normal, 2:high)
 end

 properties (SetAccess=private)
 ConnStr = ''; % The Connection-String
 ViSessn = 0; % VISA Session
 end

 properties (Constant=true)
 VISA_IN_BUFF_SIZE = 8192000; % VISA Input-Buffer Size (bytes)
 VISA_IN_BUFF_SIZE_LONG = 8192000; % VISA Input-Buffer Size for Long Transfers (bytes)
 VISA_OUT_BUFF_SIZE = 8192000; % VISA Output-Buffer Size (bytes)
 VISA_OUT_BUFF_SIZE_LONG = 8192000; % VISA Output-Buffer Size for Long Transfers (bytes)
 VISA_TIMEOUT_SECONDS = 10; % VISA Timeout (seconds)
 BINARY_CHUNK_SIZE = 409600; % Binary-Data Write Chunk Size (samples)
 WAIT_PAUSE_SEC = 0.02; % Waiting pause (seconds)
 end

 methods % public

 function obj = TEProteusInst(connStr, paranoiaLevel)
 % TEProteusInst - Handle Class Constructor
 %
 % Synopsis
 % obj = TEProteusInst(connStr, [verifyLevel])
 %
 % Description
 % This is the constructor of the VisaConn (handle) class.
 %
 % Inputs ([]s are optional)
 % (string) connStr connection string: either a full
 % VISA resource name, or an IP-Address.
 % (int) [paranoiaLevel = 1] paranoia level [0,1 or 2].
 %
 % Outputs
 % (class) obj VisaConn class (handle) object.
 %

 assert(nargin == 1 || nargin == 2);

 ipv4 = '^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$';
 if 1 == regexp(connStr, ipv4)

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 37

 connStr = sprintf('TCPIP0::%s::5025::SOCKET', connStr);
 end

 if nargin == 2
 %verifyLevel = varargin(1);
 if paranoiaLevel < 1
 obj.ParanoiaLevel = 0;
 elseif paranoiaLevel > 2
 obj.ParanoiaLevel = 2;
 else
 obj.ParanoiaLevel = fix(paranoiaLevel);
 end
 else
 obj.ParanoiaLevel = 1;
 end

 obj.ConnStr = connStr;
 % Select the right one for the active VISA Library
 obj.ViSessn = visa('NI', connStr);
 %obj.ViSessn = visa('keysight', connStr);
 %obj.ViSessn = visa('tek', connStr);

 set(obj.ViSessn, 'OutputBufferSize', obj.VISA_OUT_BUFF_SIZE);
 set(obj.ViSessn, 'InputBufferSize', obj.VISA_IN_BUFF_SIZE);
 obj.ViSessn.Timeout = obj.VISA_TIMEOUT_SECONDS;
 %obj.ViSessn.Terminator = newline;

 end

 function delete(obj)
 % delete - Handle Class Destructor
 %
 % Synopsis
 % obj.delete()
 %
 % Description
 % This is the destructor of the VisaConn (handle) class.
 % (to be called on a VisaConn class object).
 %

 obj.Disconnect();
 delete(obj.ViSessn);
 obj.ViSessn = 0;
 end

 function ok = Connect(obj)
 % Connect - open connection to remote instrument.
 %
 % Synopsis
 % ok = obj.Connect()
 %
 % Description
 % Open connection to the remote instrument
 %
 % Outputs
 % (boolean) ok true if succeeded; otherwise false.
 %

 ok = false;
 try
 if strcmp(obj.ViSessn.Status, 'open')
 ok = true;
 else
 fopen(obj.ViSessn);
 pause(obj.WAIT_PAUSE_SEC);
 ok = strcmp(obj.ViSessn.Status, 'open');
 end
 catch ex
 msgString = getReport(ex);
 warning('fopen failed:\n%s',msgString);
 end
 end

 function Disconnect(obj)
 % Disconnect - close connection to remote instrument.
 %
 % Synopsis
 % obj.Disconnect()

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 38

 %
 % Description
 % Close connection to remote-instrument (if open).

 if strcmp(obj.ViSessn.Status, 'open')
 stopasync(obj.ViSessn);
 flushinput(obj.ViSessn);
 flushoutput(obj.ViSessn);
 fclose(obj.ViSessn);
 end
 end

 function [errNb, errDesc] = QuerySysErr(obj, bSendCls)
 % QuerySysErr - Query System Error from the remote instrument
 %
 % Synopsis
 % [errNb, [errDesc]] = obj.QuerySysErr([bSendCls])
 %
 % Description
 % Query the last system error from the remote instrument,
 % And optionally clear the instrument's errors list.
 %
 % Inputs ([]s are optional)
 % (bool) [bSendCls = false]
 % should clear the instrument's errors-list?
 %
 % Outputs ([]s are optional)
 % (scalar) errNb error number (zero for no error).
 % (string) [errDesc] error description.

 if ~exist('bSendCls', 'var')
 bSendCls = false;
 end

 obj.waitTransferComplete();
 [answer, count, errmsg] = query(obj.ViSessn, 'SYST:ERR?');
 obj.waitTransferComplete();

 if ~isempty(errmsg)
 error('getError() failed: %s', errmsg);
 end

 sep = find(answer == ',');
 if (isempty(sep) || count <= 0 || answer(count) ~= newline)
 warning('querySysErr() received invalid answer: "%s"', answer);
 flushinput(obj.ViSessn);
 end

 if ~isempty(sep) && isempty(errmsg)
 errNb = str2double(answer(1:sep(1) - 1));
 errmsg = answer(sep(1):end);
 if 0 ~= errNb && nargin > 1 && bSendCls
 query(obj.ViSessn, '*CLS; *OPC?');
 end
 else
 errNb = -1;
 if isempty(errmsg)
 errmsg = answer;
 end
 end

 if nargout > 1
 errDesc = errmsg;
 end
 end

 function SendCmd(obj, cmdFmt, varargin)
 % SendCmd - Send SCPI Command to instrument
 %
 % Synopsis
 % obj.SendCmd(cmdFmt, ...)
 %
 % Description
 % Send SCPI Command to the remote instrument.
 %
 % Inputs ([]s are optional)

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 39

 % (string) cmdFmt command string-format (a la printf).
 % varargin arguments for cmdFmt
 obj.waitTransferComplete();

 if nargin > 2
 cmdFmt = sprintf(cmdFmt, varargin{1:end});
 end

 resp = '';
 errMsg = '';
 respLen = 0;

 if obj.ParanoiaLevel == 0
 fprintf(obj.ViSessn, cmdFmt);
 obj.waitTransferComplete();
 elseif obj.ParanoiaLevel == 1
 cmdFmt = strcat(cmdFmt, ';*OPC?');
 [resp, respLen, errMsg] = query(obj.ViSessn, cmdFmt);
 elseif obj.ParanoiaLevel >= 2
 cmdFmt = strcat(cmdFmt, ';:SYST:ERR?');
 [resp, respLen, errMsg] = query(obj.ViSessn, cmdFmt);
 end

 if (obj.ParanoiaLevel > 0 && ~isempty(errMsg))
 error('query(''%s\'') failed\n %s', cmdFmt, errMsg);
 elseif (obj.ParanoiaLevel >= 2 && respLen > 0)
 resp = deblank(resp);
 sep = find(resp == ',');
 if ~isempty(sep)
 errNb = str2double(resp(1:sep(1) - 1));
 if 0 ~= errNb
 query(obj.ViSessn, '*CLS; *OPC?');
 warning('System Error #%d after ''%s'' (%s).', ...
 errNb, cmdFmt, resp);
 end
 end
 end
 end

 function resp = SendQuery(obj, qformat, varargin)
 % SendQuery - Send SCPI Query to instrument
 %
 % Synopsis
 % resp = obj.SendQuery(qformat, ...)
 %
 % Description
 % Send SCPI Query to the remote instrument,
 % And return the instrument's response (string).
 %
 % Inputs ([]s are optional)
 % (string) qformat query string-format (a la printf).
 % varargin arguments for qformat
 %
 % Outputs ([]s are optional)
 % (string) resp the instrument's response.

 obj.waitTransferComplete();
 if nargin == 2
 [resp, respLen, errMsg] = query(obj.ViSessn, qformat);
 elseif nargin > 2
 qformat = sprintf(qformat, varargin{1:end});
 [resp, respLen, errMsg] = query(obj.ViSessn, qformat);
 else
 resp = '';
 errMsg = '';
 respLen = 0;
 end

 if ~isempty(errMsg)
 error('query(''%s\'') failed\n %s', qformat, errMsg);
 end

 if respLen > 0
 % remove trailing blanks
 resp = deblank(resp);
 end
 end

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 40

 function SendBinaryData(obj, pref, datArray, elemType)
 % SendBinaryData - Send binary data to instrument
 %
 % Synopsis
 % obj.SendBinaryData(pref, datArray, elemType)
 %
 % Description
 % Send array of basic-type elements to the remote instrument
 % as binary-data with binary-data header and (optional) SCPI
 % statement prefix (e.g. ":TRAC:DATA").
 %
 % Inputs ([]s are optional)
 % (string) pref SCPI statement (e.g. ":TRAC:DATA")
 % sent before the binary-data header.
 % (array) datArray array of fixed-size elements.
 % (string) elemType element type name (e.g. 'uint8')

 obj.waitTransferComplete();

 if ~exist('pref', 'var')
 pref = '';
 end
 if ~exist('datArray', 'var')
 datArray = [];
 end
 if ~exist('elemType', 'var')
 elemType = 'uint8';
 datArray = typecast(datArray, 'uint8');
 end

 numItems = length(datArray);
 switch elemType
 case { 'int8', 'uint8' 'char' }
 itemSz = 1;
 case { 'int16', 'uint16' }
 itemSz = 2;
 case { 'int32', 'uint32', 'single' }
 itemSz = 4;
 case { 'int64', 'uint64', 'double' }
 itemSz = 8;
 otherwise
 error('unsopported element-type ''%s''', elemType);
 end

 assert(itemSz >= 1 && itemSz <= obj.BINARY_CHUNK_SIZE);

 getChunk = @(offs, len) datArray(offs + 1 : offs + len);

 % make binary-data header
 szStr = sprintf('%lu', numItems * itemSz);
 pref = sprintf('*OPC?;%s#%u%s', pref, length(szStr), szStr);
 % send it (without terminating new-line!):
 fwrite(obj.ViSessn, pref, 'char');
 obj.waitTransferComplete();

 % send the binary-data (in chunks):
 offset = 0;
 chunkLen = fix(obj.BINARY_CHUNK_SIZE / itemSz);
 while offset < numItems
 if offset + chunkLen > numItems
 chunkLen = numItems - offset;
 end
 dat = getChunk(offset, chunkLen);
 fwrite(obj.ViSessn, dat, elemType);
 obj.waitTransferComplete();
 offset = offset + chunkLen;
 end

 % read back the response to that *OPC? query:
 q = fscanf(obj.ViSessn, '%s');
 %fgets(obj.ViSessn, 2);

 if obj.ParanoiaLevel >= 2
 [errNb, errDesc] = obj.QuerySysErr(1);
 if 0 ~= errNb

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 41

 warning('System Error #%d (%s) after sending ''%s ..''.', errNb, errDesc, pref);
 end
 end
 end

 function datArray = ReadBinaryData(obj, pref, elemType)
 % ReadBinaryData - Read binary data from instrument
 %
 % Synopsis
 % datArray = obj.ReadBinaryData(pref, elemType)
 %
 % Description
 % Read array of basic-type elements from the instrument.
 %
 % Inputs ([]s are optional)
 % (string) pref SCPI statement (e.g. ":TRAC:DATA")
 % sent before the binary-data header.
 % (string) elemType element type name (e.g. 'uint8')
 %
 % Outputs ([]s are optional)
 % (array) datArray array of fixed-size elements.

 obj.waitTransferComplete();

 %set(obj.ViSessn, 'InputBufferSize', obj.VISA_IN_BUFF_SIZE_LONG);

 if ~exist('pref', 'var')
 pref = '';
 end

 switch elemType
 case { 'int8', 'uint8' 'char' }
 itemSz = 1;
 case { 'int16', 'uint16' }
 itemSz = 2;
 case { 'int32', 'uint32', 'single' }
 itemSz = 4;
 case { 'int64', 'uint64', 'double' }
 itemSz = 8;
 otherwise
 error('unsopported element-type ''%s''', elemType);
 end

 assert(itemSz >= 1 && itemSz <= obj.BINARY_CHUNK_SIZE);

 % Send the prefix (if it is not empty)
 if ~isempty(pref)
 fprintf(obj.ViSessn, pref);
 end
 obj.waitTransferComplete();

 % Read binary header
 while true
 ch = fread(obj.ViSessn, 1, 'char');
 if ch == '#'
 break
 end
 end

 % Read the first digit
 ch = fread(obj.ViSessn, 1, 'char');
 assert ('0' < ch && ch <= '9');

 ndigits = ch - '0';
 %fprintf('ReadBinaryData: ndigits = %d\n', ndigits);

 sizestr = fread(obj.ViSessn, ndigits, 'char');
 numbytes = 0;
 for n = 1:ndigits
 ch = sizestr(n, 1);
 numbytes = numbytes * 10 + (ch - '0');
 end

 %fprintf('ReadBinaryData: numbytes = %d\n', numbytes);

 datLen = ceil(numbytes / itemSz);
 assert(datLen * itemSz == numbytes);

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 42

 datArray = zeros(1, datLen, elemType);

 chunkLen = fix(obj.BINARY_CHUNK_SIZE / itemSz);

 %fprintf('ReadBinaryData: datLen=%d, chunkLen=%d\n', datLen, chunkLen);

 % send the binary-data (in chunks):
 offset = 0;

 while offset < datLen
 if datLen - offset < chunkLen
 chunkLen = datLen - offset;
 end
 datArray(offset + 1 : offset + chunkLen) = ...
 fread(obj.ViSessn, chunkLen, elemType);
 %obj.waitTransferComplete();
 offset = offset + chunkLen;
 end

 % read the terminating newline character
 ch = fread(obj.ViSessn, 1, 'char');
 assert(ch == newline);

 set(obj.ViSessn, 'InputBufferSize', obj.VISA_IN_BUFF_SIZE);
 end

 function model = identifyModel(obj)
 idnStr = obj.SendQuery('*IDN?');
 idnStr = split(idnStr, ',');

 if length(idnStr) > 1
 model = idnStr(2);
 else
 model ='';
 end

 model = char(model);
 end

 function options = getOptions(obj)
 optStr = obj.SendQuery('*OPT?');
 options = split(optStr, ',');
 end

 function maxSr = getMaxSamplingRate2(obj, model)

 maxSr = 9.0E+9;

 if contains(model, 'P258')
 maxSr = 2.5E+9;
 elseif contains(model, 'P128')
 maxSr = 1.25E+9;
 end
 end

 function maxSr = getMaxSamplingRate(obj)
 maxSr = obj.SendQuery(':FREQ:RAST MAX?');
 maxSr = str2double(maxSr);
 end

 function minSr = getMinSamplingRate2(obj, model)

 minSr = 1.0E+9;
 end

 function minSr = getMinSamplingRate(obj)
 minSr = obj.SendQuery(':FREQ:RAST MIN?');
 minSr = str2double(minSr);
 end

 function granularity = getGranularity(obj, model, options)

 flagLowGranularity = false;

 for i = 1:length(options)

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 43

 if contains(options(i), 'LWG')
 flagLowGranularity = true;
 end
 end

 sR = obj.SendQuery(':FREQ:RAST?');
 sR = str2double(sR);
 % For P9082 and P9484 granularity is 64 for SR > 2.5E9
 granularity = 64;
 if flagLowGranularity && sR<=2.5E9
 granularity = 32;
 end

 if contains(model, 'P258')
 granularity = 32;
 if flagLowGranularity
 granularity = 16;
 end
 elseif contains(model, 'P128')
 granularity = 32;
 if flagLowGranularity
 granularity = 16;
 end
 end
 end

 function numOfChannels = getNumOfChannels(obj, model)

 numOfChannels = 4;

 if contains(model, 'P9082')
 numOfChannels = 2;
 elseif contains(model, 'P9482')
 numOfChannels = 2;
 elseif contains(model, 'P1282')
 numOfChannels = 2;
 elseif contains(model, 'P2582')
 numOfChannels = 2;
 end
 end

 function dacRes = getDacResolution2(obj, model)

 dacRes = 16;

 if contains(model, 'P908')
 dacRes = 8;
 end
 end

 function dacRes = getDacResolution(obj)

 dacRes = obj.SendQuery(':TRAC:FORM?');

 if contains(dacRes, 'U8')
 dacRes = 8;
 else
 dacRes = 16;
 end
 end

 function retval = Quantization (obj, myArray, dacRes)

 minLevel = 0;
 maxLevel = 2 ^ dacRes - 1;
 numOfLevels = maxLevel - minLevel + 1;

 retval = round((numOfLevels .* (myArray + 1) - 1) ./ 2);
 retval = retval + minLevel;

 retval(retval > maxLevel) = maxLevel;
 retval(retval < minLevel) = minLevel;

 end

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 44

 end % public methods

 methods (Access = private) % private methods

 function waitTransferComplete(obj)
 % waitTransferComplete - wait till transfer status is 'idle'
 while ~strcmp(obj.ViSessn.TransferStatus,'idle')
 pause(obj.WAIT_PAUSE_SEC);
 end
 end
 end % private methods

end

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 45

Document Revision History

Table Document Revision History

Revision Date Description Author

1.0 26-October-21 • Original release.
Joan Mercade

joan@taborelec.com

Acronyms & Abbreviations

Table Acronyms & Abbreviations

Acronym Description

µs or us Microseconds

ACPR Adjacent Channel Power Ratio

ADC Analog to Digital Converter

AM Amplitude Modulation

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

AWG Arbitrary Waveform Generators

AWT Arbitrary Waveform Transceiver

BNC Bayonet Neill–Concelm (coax connector)

BW Bandwidth

CCDF Complementary Cumulative Distribution Function

CW Continuous Wave

CW Carrier Wave

DAC Digital to Analog Converter

dBc dB/carrier. The power ratio of a signal to a carrier signal, expressed in decibels

dBm Decibel-Milliwatts. E.g., 0 dBm equals 1.0 mW.

DDC Digital Down-Converter

DHCP Dynamic Host Configuration Protocol

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 46

Acronym Description

DNL Differential Non-Linearity

DSO Digital Storage Oscilloscope

DUC Digital Up-Converter

DUT Device Under Test

ENoB Effective Number of Bits

ESD Electrostatic Discharge

EVM Error Vector Magnitude

FPGA Field-Programmable Gate Arrays

FW Firmware

GHz Gigahertz

GPIB General Purpose Interface Bus

GS/s Giga Samples per Second

GUI Graphical User Interface

HP Horizontal Pitch (PXIe module horizontal width, 1 HP = 5.08mm)

Hz Hertz

IF Intermediate Frequency

IMD Intermodulation Distortion

INL Integral Non-Linearity

I/O Input / Output

IP Internet Protocol

IQ In-phase Quadrature

IVI Interchangeable Virtual Instrument

JSON JavaScript Object Notation

kHz Kilohertz

LCD Liquid Crystal Display

LO Local Oscillator

MAC Media Access Control (address)

MDR Mini D Ribbon (connector)

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 47

Acronym Description

MHz Megahertz

ms Milliseconds

NCO Numerically Controlled Oscillator

ns Nanoseconds

OFDM Orthogonal Frequency-Division Multiplexing

PAM Pulse-amplitude Modulation

PAPR Peak-to-Average Power Ratio

PC Personal Computer

PCAP Projected Capacitive Touch Panel

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PXI PCI eXtension for Instrumentation

PXIe PCI Express eXtension for Instrumentation

QC Quantum Computing

Qubits Quantum bits

R&D Research & Development

RF Radio Frequency

RT-DSO Real-Time Digital Oscilloscope

s Seconds

SA Spectrum Analyzer

SCPI Standard Commands for Programmable Instruments

SFDR Spurious Free Dynamic Range

SFP Software Front Panel

SINAD Signal-to-Noise-And-Distortion Ratio

SMA Subminiature version A connector

SMP Subminiature Push-on connector

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 48

Acronym Description

SQNR Signal to Quantization Noise Signal

SRAM Static Random-Access Memory

TFT Thin Film Transistor

T&M Test and Measurement

TPS Test Program Sets

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VCP Virtual COM Port

Vdc Volts, Direct Current

V p-p Volts, Peak-to-Peak

VSA Vector Signal Analyzer

VSG Vector Signal Generator

WDS Wave Design Studio

Tabor Electronics | RF Signal Generation with Digital Up-Converters in AWGs. Rev 1.0 49

Resources & Contact

For more information on Microwave signal generation challenges and solutions, review the following

resources:

⧫ White Paper: Multi-Nyquist Zones Operation-Solution Note

⧫ White Paper: Direct Generation/Acquisition of Microwave Signals

⧫ White Paper: Effective Number of Bits for Arbitrary Waveform Generators

⧫ White Paper: Multi-Tone Signal Generation with AWGs

⧫ Solution Brief: Envelope Tracking – Solution Note

⧫ Download Data Sheet

Stay Up to Date

⧫ www.taborelec.com

⧫ LinkedIn page

⧫ YouTube channel

Corporate Headquarters

Address: 9 Hata’asia St., 3688809 Nesher, Israel

Phone: (972) 4 821 3393

Fax: (972) 4 821 3388

For Information

Email: info@tabor.co.il

For Service & Support

Email: support@tabor.co.il

US Sales & Support (Astronics)

Address: 4 Goodyear Irvine, CA 92618

Phone: (800) 722 2528

Fax: (949) 859 7139

For Information

Email: info@taborelec.com

For Service & Support

Email: support@taborelec.com

All rights reserved to Tabor Electronics LTD. The contents of this document are provided by Tabor Electronics, 'as

is'. Tabor makes no representations nor warranties with respect to the accuracy or completeness of the contents

of this publication and reserves the right to make changes to the specification at any time without notice.

https://www.taborelec.com/multi-nyquist-zones-operation-solution-note
https://www.taborelec.com/Files/8_20210108133914.973.pdf
https://www.taborelec.com/Files/Effective%20Number%20of%20Bits_for%20Arbitrary%20Waveform%20Generators%20full%20White%20paper.pdf
https://www.taborelec.com/Files/Multi-Tone_Signal_Generation_with_AWGs_White_Paper_20210412173455.282.pdf
https://www.taborelec.com/Envelope-Tracking-Solution-Note
https://www.taborelec.com/Files/Proteus_RF%20AWG_Datasheets.pdf
http://www.taborelec.com/
http://www.linkedin.com/company/tabor-electronics
https://www.youtube.com/user/Taborelectronicsltd
mailto:info@tabor.co.il
mailto:support@tabor.co.il
mailto:info@taborelec.com
mailto:support@taborelec.co

