

- Single / Dual Channel 100MS/s waveform generator
- 1M standard waveform memory (2M/4M option)
- · Sine waves to 50MHz, Square to 30MHz
- SINE OUT to 100MHz, 1Vp-p
- 11 Built-in popular standard waveforms
- 10Vp-p into 50Ω, double into high impedance
- 14 Bit amplitude resolution
- 11 digits frequency resolution (limited by 1µHz)

100MS/s Single/Dual Channel Arbitrary Waveform Generators

- AM, FM, Arbitrary FM, FSK, Ramped FSK modulation
- · Comprehensive memory management
- · Linear and Logarithmic Sweep
- 1 ppm clock accuracy and stability
- User friendly and menu driven 3.8" color LCD display
- · LAN, USB and GPIB interfaces
- · Multi-Instrument synchronization
- · ArbConnection software for easy waveform creation

The WW1071/2 represents a new dimension in arbitrary waveform generator design. With an unprecedented combination of arbitrary generator and synthesizer, versatility, high resolution and wide frequency range, and outstanding performance-to-price ratio, the WW1071/2 delivers diverse benefits that will facilitate tasks in many fields.

100MS/s Sample Rate

New technology requirements are driving communications systems to use increasingly narrow channel widths. A high sample rate of 100MS/s makes the WW1071/2 an ideal modulation source for troubleshooting new encoding schemes. The WW1071/2 also provides high-speed waveforms to simulate signal distortion, video signals, component failures, and power supply line cycle dropouts and transients.

High Performance

Each channel of the WW1071/2 delivers precise waveforms with 14 bits of amplitude resolution and up to 14 digits of frequency

resolution from remote with extremely low phase noise. Exceptional electrical performance includes up to 10Vp-p into 50Ω over the full frequency range. Selectable filters ensure clean stimulus waveforms enabling the generator to simulate modulation waveforms.

14 Bit Resolution

The 14-bit resolution provides 16,384 output levels. This means that even audio waveforms can be generated with excellent fidelity. It also allows video-and other complex waveforms-to be generated with small details superimposed on large signals, in order to test the response of receiving systems.

Function Generator

When used as a simple function generator the instrument offers ten basic waveforms with adjustable parameters all of which are accessible from the front panel. These are sine, triangle, square, pulse, ramp, sinc, Gaussian, exponential (up and down), noise.

as well as DC. Sine and square waves can be generated at up to 50MHz.

Up to 4M Waveform Memory

The WW1071/2 offers 1M word memory standard and 2M or 4M word optional for arbitrary waveforms. In addition, the memory can be divided into as many as 2048 segments, which can be looped and linked in many different ways. Using 4M word at 100MS/s to generate a video signal, for example, the duration is 0.04 seconds, 25Hz, even without any looping of repetitive elements.

Sequence Generator

When the sequencing facilities are employed, the WW1071/2's uniqueness is obvious. The memory segments can be linked and repeated in any combination both manually and under programmed control. This allows test software to switch between many different waveforms rapidly without the need to download multiple times, enhancing test throughput in a way that is unmatched

100MS/s Single/Dual Channel Arbitrary Waveform Generators

by competing products. The sequence generator has four advanced modes: automatic, stepped, single and mixed, which make it even a more powerful tool.

High-Quality Modulation Signal Source

One of the many attractive features of the WW1071/2 is the sample clock modulation function. In ordinary arbitrary waveform generators, to make a frequency modulated sine wave you have to enter the complete mathematical function. Not so with the WW1071/2: all that is necessary is generating the carrier signal, and then modulating the clock to obtain the required result. The sample clock modulation can be done using internal waveforms such as sine, square, triangle, and ramp or using downloaded arbitrary modulating waveforms. This allows you to generate signals that would be difficult or impossible to define using an equation. AM, Linear and Logarithmic Sweeps, FSK and Ramped FSK are available as well.

Triggering Facilities

However versatile the waveform generation systems are made, the need for external control of generation is vital. The triggering facilities of the WW1071/2 match the generation functions in versatility. In the simplest mode, signals are output continuously. The WW1071/2 also offers the triggered mode, gated mode, external burst mode, and internal burst mode, all of which can use an external trigger signal or an internal trigger. The use of external sources to prompt the switching of segments has already been mentioned.

Inter-Channel Phase Control (WW1072)

In the WW1072, both channels share a common sample clock, and both channels are triggered from the same source assuring tightly synchronized channel-to-channel timing. Precise control over channel-to-

channel phase offset is achieved by allowing control over channel start phase with a resolution down to as small as 1 waveform point. This enables extremely accurate timing or phase dependencies to be studied, such as those found in high speed digital communication systems.

Easy to use

Large and user-friendly 3.8" back-lit color LCD display facilitates browsing through menus, updating parameters and displaying detailed and critical information for your waveform output. Combined with numeric keypad, cursor position control and a dial, the front panel controls simplify the often complex operation of an arbitrary waveform generator.

High Speed Access

Access speed is an increasingly important requirement for test systems. Included with the instrument is a variety of interfaces: LAN, USB and GPIB so one may select the interface most compatible to individual requirements. Using any of the external interfaces, instrument functions controlling features as well as downloading waveforms and sequences is fast, time saving and easily tailored to every system regardless if it is just a laptop to instrument or fullfeatured ATE system. IVI drivers and factory support will speed up system integration thus minimizing time-to-market and reduce system development costs significantly.

Multiple Environments to Write Your Code

Model WW1071/2 comes with a complete set of drivers, allowing you to write your application in various environments such as: Labview, CVI, C++, VB and MATLAB. You may also link the supplied dll to other Windows based API's or, use low level SCPI commands (Standard Commands for Programmable Instruments) to program the instrument, regardless if your application is written for Windows, Linux or Macintosh operating systems.

Multi-Instrument Synchronization

Multiple WW1071/2s can be synchronized using a Master-Slave arrangement allowing users to benefit from the same high quality performance in their multi-channels needs.

ArbConnection

ArbConnection is a graphical tool that provides an unlimited source of Arbitrary Waveforms. With the ArbConnection software you can control instruments functions, modes and features. You can also create a virtually infinite amount of test waveforms. Freehand sketch allows you to draw your own custom waveform for quick analysis of analog signals. You can use the built-in equation editor to create your own exotic functions. Add or subtract components of a Fourier series to characterize digital or analog filters or inject random noise into a signal to test immunity to auxiliary noise.

100MS/s Single/Dual Channel Arbitrary Waveform Generators Specification

CHANNELS

No. of Channels: 1/2, semi-independent

STANDARD WAVEFORMS

Waveforms: Sine, Triangle, Square, Pulse,

Ramp, Sine(x)/x, Gaussian, Exponential, Repetitive Noise,

Frequency Range:

Sine 100µHz to 50MHz Square, Pulse 100µHz to 30MHz All others 100µHz to 15MHz

SINE

Start Phase: 0 to 360° Phase Resolution: 0.1°

Harmonics Distortion, 3Vp-p (typ.):

Non-Harmonic Distortion (typ.):

DC to 15MHz <-70dBc 15MHz to 50MHz <-60dBc **Total Harmonic Distortion:** DC to 100kHz 0.1% **Flatness (1kHz)(typical):**

DC to 1MHz 1% 1MHz to 25MHz 5% 25MHz to 50MHz 20%

Phase Noise (8 points Sine, Max. SCLK)

100Hz Offset <-103dBc/Hz 1kHz Offset <-110dBc/Hz 10kHz Offset <-118dBc/Hz 100kHz Offset <-124dBc/Hz 1MHz Offset <-135dBc/Hz

TRIANGLE, RAMP

Start Phase: 0 to 360° **Phase Resolution:** 0.1°

Timing Ranges: 0%-99.9% of period

SQUARE, PULSE

Duty cycle: 1% to 99%
Timing Ranges: 0%-99.9% of period

Rise/Fall time: <8ns Aberration: <5%

SINC (SINE(x)/x)

"0" Crossing: 4 to 100 cycles

GAUSSIAN PULSE

Time Constant: 1 to 200

EXPONENTIAL FALL/RISING PULSE

Time Constant: -100 to 100

DC

Range: -5V to 5V

DIGITAL PULSE GENERATOR OPTION

Pulse Mode: Single or double,

programmable
Polarity: Normal, inverted,
complement

Period: 40ns to 1000s Resolution: 10ns

Pulse Width: 20ns to 1000s

Rise/Fall Time:

Fast <6ns (typ.) Linear 10ns to 1000s

High Time, Delay &

Double Pulse Delay: 10ns to 1000s

Amplitude Window: 10mVp-p to 10Vp-p(1)

Low Level -5V to +4.995V(1)

High Level -4.995V to +5V(1)

(1) Double into high impedance

NOTES

1. All pulse parameters, except rise and fall times, may be freely programmed within the selected pulse period provided that the ratio between the period and the smallest incremental unit does not exceed the ratio of 1,000,000 to 1. With the 2M option, the ratio is extended to 2,000,000 to 1, hence the specifications below do not show maximum limit as each must be computed from

the above relationship.

2. Rise and fall times, may be freely programmed provided that the ratio between the rise/fall time and the smallest incremental unit does not exceed the ratio of 100.000 to 1.

3. The sum of all pulse parameters must not exceed the pulse period setting

ARBITRARY WAVEFORMS

Sample Rate: 100mS/s to 100MS/s

Vertical Resolution: 14 Bits

Waveform Memory: 1M points standard, 2M/4M option (per channel)

76' 16 points

Min. Segment Size: 16 points Resolution: 4 points No. of Segments: 1 to 2k

SEQUENCED ARBITRARY WAVEFORMS

Operation: Permits division of the

memory bank into smaller segments. Segments may be linked, and repeated in user-selectable fashion to generate extremely long

waveforms.

Sequencer steps: 1 to 2k Min. Seg. Duration: 1µs Segment loops: 1 to 1M

ADVANCE MODES

Automatic:	No triggers required to step			
, (0.00)	from one segment to the			
	next. Sequence is repeated continuously through a pre-			
Stepped:	programmed sequence table. Current segment is sampled continuously, external trigger advances to next			
Single:	programmed segment. Current segment is sampled to the end of the segment including repeats and idles			
Mixed:	there. Next trigger advances to next segment. Each step of a sequence can be programmed to advance either: a) automatic			
Advance Source:	(Automatic mode), or b) with a trigger (Stepped mode) External (TRIG IN), Internal or software			

MODULATION

COMMON CHARACTERISTICS

Carrier Waveform: Sine Triangle Square Pulse

Ramp, Sine(x)/x, Gaussian, Exponential, Repetitive Noise,

DC and Arb

Carrier SCLK: 100mS/s to 100MS/s
Carrier Frequency: Waveform dependent
Resolution: 12 digits, limited by 1µHz

Accuracy: 0.1% Freq. Distortion: <0.1% Modulation Source:

Internal FM, Arbitrary FM, Sweep

External AM, FSK

FΜ

Modulating Shape: Sine, Square, Triangle / Ramp

Modulation Freq.: 1mHz to 100kHz

Deviation Range: 100mS/s to 50MS/s

ARBITRARY FM

Modulating Shape: Arbitrary waveform, 10 to

20000 waveform points

Modulating SCLK: 1mS/s to 2MS/s

Deviation Range: 100mS/s to 50MS/s

AM

 Envelope Freq.:
 1μHz to 500kHz

 Sensitivity:
 0V to +5V (5Vp-p)

 Modulation Depth:
 0% to 100%

100MS/s Single/Dual Channel **Arbitrary Waveform Generators Specification**

Type: Hop or Ramp Low level: Carrier sample clock High level: Hop frequency Baud Rate Range: 1bits/sec to 10Mbits/sec Min. FSK Delay: 1 waveform cycle + 50ns Ramp FSK: Time 10us to 1s Resolution

3 digits

SWEEP

Sweep Time: 1ms to 1000s

Sweep Step: Linear, Logarithmic or Arb

Sweep Direction:

COMMON CHARACTERISTICS

FREQUENCY

Resolution:

Display 11 digits (limited by $1\mu Hz$) Remote 14 digits (limited by 1µHz) Accuracy/Stability: Same as reference

ACCURACY REFERENCE CLOCK

0.0001% (1ppm TCXO) initial Internal tolerance over a 19°C to 29°C temperature range: 1ppm/°C below 19°C and above 29°C; 1ppm/year aging

External 10MHz TTL, 50% duty cycle

AMPLITUDE

Range: 10mV to 10Vp-p, into 50Ω ; Double into open circuit

Resolution: 4 digits

Accuracy (1kHz):

100mV to 1Vp-p $\pm(1\% + 5mV)$ $\pm(1\% + 25mV)$ 1Vp-p to 10Vp-p

OFFSET

Range: 0 to ±4.5V Resolution: 2 2 mV Accuracy:

FILTERS

Type: 25MHz / 50MHz Elliptic

OUTPUTS

MAIN OUTPUTS

Coupling: DC coupled Connector: Front panel BNC Impedance: 50Ω, ±1%

Protection: Protected against temporary

short to case ground

SYNC/MARKER OUTPUT

Connector: Front panel BNC impedance: Level: >2V into 50 Ω , 4V into 10k Ω Validators: BIT LCOM Protection: Protected against temporary short to case ground Position: Point 0 to n Width: 4 to 100000 points Resolution: 4 points Source: Channel 1

SAMPLE CLOCK OUTPUT

Connector: Rear panel SMB

Level:

Impedance: 50 Ω , terminated to -2V

SINEWAVE OUTPUT

Connector: Rear panel BNC Impedance: 50Ω, ±1% Level: 1V into 500

Protection: Protected against temporary

short to case ground Sample clock frequency Frequency Range: 100mHz to 100MHz Same as Sample clock 0.05% to 100kHz <-30dBc to 100MHz

SFDR: **INPUTS**

THD:

Source:

Resolution:

TRIGGER INPUT

Connector: Rear panel BNC Input Impedance: 10k0. ±5% Polarity: Positive or negative

Threshold Level: Min. Pulse Width: 20ns

EXTERNAL REFERENCE INPUT

Connector: Rear panel BNC Frequency: 10MHz

Impedance & Level: 10kΩ ±5%, TTL, 50% ±5%

AM INPUT

Modulation Input: Rear panel BNC Impedance: Max. Input Voltage:

SAMPLE CLOCK INPUT

Connector: Rear panel SMB

Input Level:

50Ω, terminated to -2VImpedance: Range: 100mHz to 100MHz

Min. Pulse Width:

SYNCHRONIZATION CONNECTOR

Connector: Rear panel 9-pin D-SUB SYNC Cable: Optional, consult factory at the time of purchase

RUN MODES

Continuous: Free-run output of a

waveform

Triggered: Upon trigger, outputs one

waveform cycle. Last cycle

always completed

External signal enables

Gated: generator. First output

cycle synchronous with the active slope of the triggering signal. Last cycle of output waveform always completed Upon trigger, outputs a single

or multiple pre-programmed number of waveform cycles

from 1 through 1M

TRIGGER CHARACTERISTICS

System Delay: 1 Sample Clock + 150ns

Trigger Start, Stop &

Phase Control: 0 to 1M (2M/4M optional)

Resolution: 4 points Breakpoint Error: ±4 points Breakpoint Source: External, Manual, or

command

EXTERNAL

Burst:

Connector: Rear panel BNC

Level:

Slope: Positive or negative Frequency: DC to 2MHz 10kΩ, DC coupled Impedance:

INTERNAL

Range: 100mHz to 2MHz Resolution: 14 digits, limited by 1µHz Accuracy: 0.1%

MANUAL

Source: Soft trigger command from the front panel or remote

INTER-CHANNEL DEPENDENCY (WW1072)

Separate controls: Output on/off, amplitude, AM,

offset, standard waveforms, user waveforms, waveform size, sequence table, channel 2 clock divider, trigger start phase, breakpoints

Common Controls: SCLK, frequency, reference

source, trigger and sequence advance mode, SYNC OUT. FM. FSK, sweep and arm

100MS/s Single/Dual Channel **Arbitrary Waveform Generators Specification**

PHASE OFFSET (LEADING EDGE)

Range: 0 to 1M points (2M/4M

optional)

Resolution/Accuracy: 1 point, or 1 SCLK of CH. 2

initiai Skew: $\langle \pm 2ns \rangle$ with sclk divider = 1: <±3ns, with sclk divider > 1

CHANNEL 2 SAMPLE CLOCK DIVIDER

1 to 65,535 points

Resolution: 1 point

MULTI-INSTRUMENT SYNCHRONIZATION

PHASE OFFSET (LEADING EDGE)

Range: 0 to 1M points (2M/4M

optional)

Resolution: 4 point

Initial Skew: <±15ns, depending on cable

length and quality, typically with 0.5 meter coax cables

GENERAL

Voltage Range: 85 to 265V Frequency Range: 48 to 63Hz Power Consumption: 60W max

Display Type: Color LCD, back-lit 3.8" reflective Resolution 320 x 240 pixels.

Interfaces:

USB Device 1 x rear, USB device, (A type)

LAN 100/10 BASE-T

GPIB IEEE 488.2 standard interface

Dimensions:

With Feet 212 x 102 x 415mm (WxHxD) Without Feet 212 x 88 x 415mm (WxHxD)

Weight:

Without Package 3.5Ka Shipping Weight 4Kg Temperature:

Operating 0 - 50°C -40°C to + 70°C. Storage

Humidity:

11°C to 30°C: 85% 31°C to 50°C:

Safety: EN61010-1, 2nd revision

Calibration:

Warranty (1): 5 years standard ORDERING INFORMATION

MODEL DESCRIPTION WW1071 100MS/s Single Channel Arbitrary Waveform Generator WW1072 100MS/s Dual Channel Arbitrary Waveform Generator

OPTIONS

Option 1: 2M Memory (per channel) Option 2: 4M Memory (per channel)

ACCESSORIES

Sync Cable: Multi-instrument

synchronization

S-Rack Mount: 19" Single Rack Mounting Kit D-Rack Mount: 19" Dual Rack Mounting Kit

Case Kit: Professional Carrying Bag Note: Options and Accessories

must be specified at the time

of your purchase.