- · Single-channel 1.2GS/s waveform generator - · Sine wave to 400MHz and Square to 250MHz - · 12 Bit amplitude resolution - · 8M waveform memory, 16M memory, optional - 2Vp-p into 50Ω (4Vp-p option), double into open circuit - Square wave transition times of less than 700ps - · Two serial bits to generate complex digital strings - · FM, Arbitrary FM, FSK, PSK, and Sweep # 1.2GS/s Single Channel Arbitrary Waveform Generator - · Multiple run modes including gated, triggered and bursts - Powerful sequencer allowing efficient, long waveforms with multiple sequences, fast coherent segment switching and coded segment hop connector - · Trigger delay inhibits the start of the output waveform - · User friendly 3.8" color LCD display - · Two-Instrument synchronization - · LAN, USB and GPIB interfaces - · ArbConnection software for easy waveform creation The WW1281A, Single Channel Frequency Agile Waveform Synthesizer, combines industry-leading 1.2GS/s sample clock performance, frequency agility and modulation capability in a stand-alone package. Capable of generating waveforms from 1Hz to 400MHz the WW1281A supports test stimulus demands of the information age, applications requiring clear tone separation and less than 600ps transition time. #### 1.2GS/s Performance As products, which use increased signal bandwidths evolve, test equipment and systems must keep pace with this trend. The WW1281A with its high sample rate generator assures that this test tool does not lag the outbreak of new technology. Combined with unsurpassed price tag, the WW1281A is the logical choice for future test technologies. #### 16M Memory The WW1281A offers 8M words of waveform memory and 16M word as an option for generating extremely long arbitrary waveforms. In addition, the memory can be divided into as many as 16k segments, which can be looped and linked in many different ways. Harnessing such memory to the high speed performance of the WW1281A provides breakthrough solution for many applications. #### **Powerful Segmentation and Sequencing** Solving almost every complex application, powerful segmentation and sequencing produce a nearly endless variety of complex waveforms. The waveform memory can be divided into multiple waveform segments and sequenced in user-selectable fashion to create complex waveforms that have repeatable segments and thus saving precious memory space. Five different advance modes are available for the WW1281A to step through the sequence table, including stepped and mixed advance modes and thus increasing efficiency of the test system. In addition, a rear panel connector has 8-bit control of segment replay providing additional and extremely useful hardware tool to hop between segments. #### Frequency Agility Decrypting radio transmission often employs frequency hopping. The WW1281A provides breakthrough technology that allows simulation of 2-level decrypted code as easy as simply writing two frequencies. The frequency hop mode is fast, coherent and provides a great tool for simulating code transmission without loosing speed and/or integrity. #### **Accurate Output** As standard, the instrument is equipped with an internal frequency reference that has 1ppm accuracy and stability over a period of 1 year. A rear-panel input for an external frequency reference is available for applications requiring greater accuracy or stability. Using the external reference input and an external controlling host computer will enhance frequency setting resolution to an amazing 9 digits of resolution. 1.2GS/s Single Channel Arbitrary Waveform Generator #### **Modulation Capability** Agility and modulation capabilities open the way for limitless array of applications. Not only can the WW1281A generate any shape and style of waveforms, but modulations such as FM, FSK, PSK, and Sweep are easily employed without sacrificing the power of the instrument control and output run modes. #### **High Speed Function Generator** The WW1281A generates 10 standard waveforms such as sine, square and triangle waves. Sine and square waves can be generated at frequencies up to 400MHz, making the WW1281A one of the fastest function generators available today. The internal reference oscillator provides 1 ppm accuracy and has excellent long-term stability. An external frequency reference can be used if greater accuracy or stability is required. #### **Two Serial Digital Output Bits** Standard with the WW1281A are two digital outputs, placed on the rear panel and supporting applications that require simultaneous generation of analog waveforms and digital streams. The instrument's sample clock generator drives both front and rear outputs and therefore provides jitter-free simulation of analog signals combined with serial data streams. The serial data is generated from the digital outputs at baud rates up to 2.4GHz. #### Automated External Self-Calibration Usually, calibration cycles in the industry range from one to three years where instruments are sent to a service center, opened to allow access to trimmers, calibrated and certified for repeated usage. In contrast, the innovative advanced technology implemented in these systems allows calibration from any interface, USB, GPIB or LAN. Calibration factors are stored in a flash memory and thus eliminating the need to open instrument covers. #### Easy to use Large and user-friendly 3.8" back-lit color LCD display facilitates browsing through menus, updating parameters and displaying detailed and critical information for your waveform output. Combined with numeric keypad, cursor position control and a dial, the front panel controls simplify the often complex operation of an arbitrary waveform generator. #### **High Speed Access** Access speed is an increasingly important requirement for test systems. Included with the instrument is a variety of interfaces: LAN. USB and GPIB so one may select the interface most compatible to individual requirements. Using any of the external interfaces, controlling instrument functions and features as well as downloading waveforms and sequences is fast, time saving and easily tailored to every system regardless if it is just a laptop to instrument or full-featured ATE system. IVI drivers and factory support will speed up system integration thus minimizing time-to-market and reduce system development costs significantly. #### **Multiple Environments to Write Your Code** Model WW1281A comes with a complete set of drivers, allowing you to write your application in various environments such as: Labview, CVI, C++, VB and MATLAB. You may also link the supplied dll to other Windows based API's or, use low level SCPI commands (Standard Commands for Programmable Instruments) to program the instrument, regardless if your application is written for Windows, Linux or Macintosh operating systems. #### **Two-Instrument Synchronization** Two WW1281As can be synchronized using a Master-Slave arrangement allowing users to benefit from the same high quality performance for their multi-channel needs. This arrangement can convert two WW1281As into a two-channel system that is phase-coupled for applications such as I & Q and more. #### **ArbConnection** The ArbConnection software provides you with full control of instrument functions, modes and features. ArbConnection is a powerful editorial tool that allows you to easily design any type of waveform. Whether it is the built in wave, pulse or serial data composers, or the built in equation editor with which you can create your own exotic functions, with ArbConnection virtually any application is possible. 1.2GS/s Single Channel Arbitrary Waveform Generator ### Specification #### CONFIGURATION Output Channels 1 #### STANDARD WAVEFORMS Waveforms: Sine, Triangle, Square, Pulse, Ramp, Sine(x)/x, Gaussian Pulse, Exponential, Noise Frequency Range: Sine 50Hz to 400MHz, continuous; 50 Hz to 125 MHz, triggerable. Square 50Hz to 250MHz All Others 50Hz to 125MHz SINE **Start Phase:** 0 to 360° **Phase Resolution:** 0.1° Harmonics Distortion, 1Vp-p (typ.): 50Hz to 2.5MHz <-50dBc 2.5MHz to 50MHz <-55dBc 50MHz to 100MHz <-50dBc 100MHz to 400MHz <-45dBc Non-Harmonic Distortion: 50Hz to 100MHz <-70dBc 100MHz to 125MHz<-65dBc 125MHz to 400MHz<-50dBc **Total Harmonic Distortion:** DC to 100kHz <0.7% (1.5% with option 2) Flatness (1kHz, AC): 50Hz to 200MHz <0.7dB (<1dB with option 2) 200MHz to 400MHz 5dB (6dB with option 2) or 50Hz to 400MHz 2dB; 1Vpp Max. (option 4) Phase Noise (8 points Sine, Max. SCLK) 100Hz Offset <-83dBc/Hz 1kHz Offset <-87dBc/Hz 10kHz Offset <-92dBc/Hz 100kHz Offset <-115dBc/Hz 1MHz Offset <-132dBc/Hz **TRIANGLE** Start Phase: 0 to 360° Phase Resolution: 0.1° Timing Ranges: 0%-99.9% of period **SQUARE** Duty cycle Range: 0% to 99.9% Timing Ranges: 0%-99.9% of period Rise/Fall time: <600ps, typ. **Aberration:** <5%, typ. SINC (Sine(x)/x) "0 Crossings" 4 to 100 cycles **GAUSSIAN** Time Constant 10 to 200 #### **EXPONENTIAL PULSE** Time Constant: -100 to 100 DC Range: -1V to +1V (Double with opt, 2) **PULSE** Pulse Mode: Single or double, programmable Polarity: Normal, inverted or complement Period: 4ns to 1000s Resolution: 1ns Pulse Width: 2ns to 1000s Rise/Fall Time: Fast <600ps, typ. Linear 1ns to 1000s High Time, Delay & Double Pulse Delay: 1ns to 1000s Impedance: 50Ω **Amplitude Window:** 50mVp-p to 2Vp-p; 50mVp-p to 4Vp-p (opt. 2) Low Level -2V to +1.95V; -3V to +2.95V (opt. 2) High Level -1.95V to +2V; -2.95V to +3V (opt. 2) (1)Double into high impedance #### NOTES: - 1. All pulse parameters, except rise and fall times, may be freely programmed within the selected pulse period provided that the ratio between the period and the smallest incremental unit does not exceed the ratio of 8,000,000 to 1. With the 16M option, the ratio is extended to 16,000,000 to 1, hence the specifications below do not show maximum limit as each must be computed from the above relationship. - 2. Rise and fall times, may be freely programmed provided that the ratio between the rise/fall time and the smallest incremental unit does not exceed the ratio of 100,000 to 1. - **3.** The sum of all pulse parameters must not exceed the pulse period setting #### **ARBITRARY WAVEFORMS** Sample Rate: 50kS/s to 1.1GS/s (typ. 1.2GS/s) Vertical Resolution: 12 Bits Waveform Memory: 8M points (16M optional) Min. Segment Size:64 pointsResolution:16 pointsNo. of Segments:1 to 10k #### **SEQUENCED ARBITRARY WAVEFORMS** Multi Sequence: 1 to 10, Selectable Sequencer steps: 1 to 4k Segment Duration: 600ns min. Segment loops: 1 to 1M #### **ADVANCE MODES** Stepped: Single: Automatic: No triggers required to step from one segment to the next. Sequence is repeated continuously through a preprogrammed sequence table Current segment is sampled continuously, external trigger advances to next programmed segment. Current segment is sampled to the end of the segment including repeats and idles there. Next trigger advances to next segment Multi Single: Current segment is sampled to the end of the segment. If repeats are programmed, each trigger stimulates one repeat. At the end of the repeat count, the next trigger advances to next segment Control input is TRIG IN. Mixed: Each step of a sequence can be programmed to advance either: a) automatic (Automatic mode), or b) with a trigger (Stepped mode) Advance Source: External (TRIG IN), Internal or software #### **MODULATION** #### **COMMON CHARACTERISTICS** Carrier Waveform: Sinewave Carrier Frequency: 1 Hz to 400MHz Resolution: 9 digits Accuracy: 10 ppm Modulation Source: Internal FM, Arbitrary FM, Sweep External FSK, PSK FΜ Modulating Shape: Sine, square, triangle, ramp Modulation Freq.: 1mHz to 100kHz Deviation Range: 100mHz to 200MHz # 1.2GS/s Single Channel Arbitrary Waveform Generator ## Specification #### ARBITRARY FM **Modulating Shape:** Arbitrary waveform **Memory Size:** 64k waveform points Memory Segmentation: No. of Segments 1 to 100 Segment Size 16 points min. Segment Control From any of the control From any of the remote interfaces or from the Coded Segment Hop connector. Vertical Resolution: Frequency 32 bits Phase 16 bits Modulating SCLK: 1 mS/s to 2.5 MS/s FSK / PSK **Baud Rate Range:** DC to 10Mbits/sec **Resolution:** Frequency dependent. **Carrier Phase:** 0 to 360° (Up to 125MHz) **SWEEP** Sweep Type: Linear or log Sweep Direction: Up or down Sweep Range: 1 Hz to 400 MHz Sweep Time: 1 ms to 1000 s, Resolution: 7 digits, ±0.1% Flatness: +3dB #### **COMMON CHARACTERISTICS** #### **FREQUENCY** **Resolution:** 9 digits **Accuracy/Stability:** Same as reference #### **ACCURACY REFERENCE CLOCK** Internal 0.0001% (1 ppm TCXO) initial tolerance over a 19°C to 29°C temperature range; 1ppm/C below 19°C and above 29°C; 1ppm/year aging rate External 10 MHz TTL, 50% 2% #### **AMPLITUDE** Range: Normal 50 mV to 2 Vp-p into 50Ω ; 50 mV to 4 Vp-p into 50Ω (opt.2) Bypass -3 dBm Min, fixed level **Resolution:** 4 digits **Accuracy (1kHz):** $\pm (3\% + 5 \text{ mV})$ **OFFSET** **Range:** 0 to $\pm 1V$; 0 to $\pm 2V$ (opt.2) **Resolution:** 4 digits **Accuracy:** ±(3% + 50 mV) #### **FILTERS** **Type:** 50 MHz, 3-pole Bessel 125 MHz, 3-pole Bessel #### **OUTPUTS** #### **MAIN OUTPUT** Type and Coupling: Normal Mode Differential, normal and inverse outputs, DC coupled Bypass Mode Single-ended, output amplifier is bypassed, AC coupled Connectors: Two Front panel SMA's [mondanes] 500 persions coach output Impedance: 50Ω nominal, each output Protection: Protected against temporary short to case ground #### **SYNC / MARKER OUTPUT** Connector: Front panel SMA Level: >2 V into 50Ω, 3V nominal into high impedance **Protection:** Protected against temporary short to case ground Type: Position: Resolution: BIT Pulse width is 16-points wide SCOM Pulse width is <16 points wide LCOM Pulse starts at the beginning of the sequence and ends before the last step of the sequence; Point 0 to n 16 points #### SAMPLE CLOCK OUTPUT **Connector:** Part of the Synchronization connector **Level:** 400mVrms, nominal #### **DIGITAL BIT OUTPUTS (B13/B14)** **DESCRIPTION:** Bits 13/14 (LVPECL level) are part of the arbitrary waveform, however, can be programmed separately without any effect on the main arbitrary waveform Connectors: Two rear-panel SMB's Update Frequency: 50kpps to 1200Mpps Position and Width: Programmable Level: LVPECL into 50Ω Impedance: 50Ω , $\pm 1\%$ **Protection:** Protected against temporary short to case ground #### **INPUTS** #### TRIGGER INPUT Sensitivity: 250mV Damage Level: ±8V Min. Pulse Width: 20ns #### **EXTERNAL REFERENCE INPUT** Connector: Rear panel BNC Frequency: 10MHz Impedance & Level: Default $10k\Omega \pm 2\%$, TTL, $50\% \pm 2\%$ Option $50\Omega \pm 5\%$, 0dBm Sinewave #### SAMPLE CLOCK INPUT **Connector:** Part of the Master/Slave $\begin{array}{c} \text{connector} \\ \text{Input Level:} \\ \text{Impedance:} \end{array} 120 \text{mV rms} \\ 50 \Omega$ Range: 50kHz to 1GHz Min. Pulse Width: 0.5ns Damage Level: 1Vrms #### SEGMENT HOPS INPUT Connector: 9-pin DSUB, female Segment Hops: 8-bits, 256 maximum 3 periods max Input Level: TTL, high = true #### SYNCHRONIZATION CONNECTOR Connector: (9W5 **Cable:** Optional, consult factory at the time of purchase #### **RUN MODES** Gated: **Burst:** **Continuous:** Free-run output of a waveform. **Triggered:** Upon trigger, outputs one waveform cycle. Last cycle always completed. External signal transition enables or disables generator output. Last cycle always completed Upon trigger, outputs a Dual or multiple pre-programmed or multiple pre-programmed number of waveform cycles from 1 through 1M. 1.2GS/s Single Channel Arbitrary Waveform Generator ### Specification #### TRIGGER CHARACTERISTICS System Delay: 1 Sample Clock+ (100 ns) Trigger Delay: 0 to 16M sample clocks Delay Resolution: 1 sample clock **EXTERNAL** Input:Front panel SMAFrequency:DC to 10 MHzThreshold Level:±5V, programmable Damage Level: ±8V Sensitivity: 250mV Min Pulse Width: 20 ns Slope: Positive or negative Trigger Jitter: ±1 sample clock **INTERNAL** **Range:** 0.1µs to 100s **Resolution:** 4 digits, limited by 0.1µs Accuracy: 0.1% Software: Soft trigger **MANUAL** **Source:** Soft trigger command from the front panel or remote #### **FREQUENCY COUNTER / TIMER** Measurements: Frequency, Period, Averaged Period, Pulse Width and Totalize Source: Trigger Input **Range:** 20Hz to 150MHz (170MHz typ.) **Sensitivity:** 500mVpp **Accuracy:** 1ppm Slope: Positive/Negative transitions Gate Time: 100µSec to 1 Sec Input Range: ±5V Trigger Modes: Continuous, Hold and Gated 12.5ns Period Averaged Range 6.66ns to 50ms Resolution 8 digits / Sec Period and Pulse Width Range 100ns to 50ms Resolution **Totalize** Range 2³²-1 Led indication #### **MULTI-INSTRUMENT SYNCHRONIZATION** #### PHASE OFFSET (LEADING EDGE) **Range:** 0 to 8M waveform points (16M optional) Resolution and #### **GENERAL** Voltage Range: 85 to 265V Frequency Range: 48 to 63Hz Power Consumption: 60W Display Type: Color LCD, back-lit Size 3.8" reflective Resolution 320 x 240 pixels, Interfaces: USB Device 1 x rear, USB device, (A type) LAN 100/10 BASE-T GPIB IEEE 488.2 standard interface Segment control D-sub, 9 pin Dimensions: With Feet 212 x 102 x 415mm (WxHxD) Without Feet 212 x 88 x 415mm (WxHxD) Weight: Without Package 3.5Kg Shipping Weight 4Kg Temperature: Operating Operating 0°C - 50°C Storage -40°C to + 70°C. **Humidity:** 11°C - 30°C 85% 31°C - 40°C 75% 41°C - 50°C 45% Safety: EN61010-1, 2nd revision Calibration: 1 year Warranty (1): 5 years standard #### **ORDERING INFORMATION** | MODEL | DESCRIPTION | |--|---| | WW1281A | 1.2GS/s Single Channel
Arbitrary Waveform Generator | | OPTIONS | | | Option 1:
Option 2: | 16M Memory (per channel) 4Vp-p into 50Ω | | ACCESSORIES | | | Sync Cable:
S-Rack Mount:
D-Rack Mount:
Case Kit: | Multi-instrument synchronization
19" Single Rack Mounting Kit
19" Dual Rack Mounting Kit
Professional Carrying Bag | | Note: | Options and Accessories must be specified at the time of your purchase. |